Gradient stuff

pull/1/head
E. Almqvist 4 years ago
parent 7bee53c1f8
commit 5a88f515d2
  1. 37
      rgbAI/lib/func.py

@ -4,17 +4,15 @@ class AIlib:
def sigmoid(x): def sigmoid(x):
return 1/(1 + np.exp(-x)) return 1/(1 + np.exp(-x))
def sigmoid_der(x):
return AIlib.sigmoid(x) * (1 - AIlib.sigmoid(x))
def correctFunc(inp:np.array): # generates the correct answer for the AI def correctFunc(inp:np.array): # generates the correct answer for the AI
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
return (predicted - correct)**2 return (predicted - correct)**2
def calcCost_derv( predicted:np.array, correct:np.array ): def getThinkCost( inp:np.array, predicted:np.array ):
return (predicted - correct)*2 corr = correctFunc(inp)
return calcCost( predicted, corr )
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
# apply ranger with * and - # apply ranger with * and -
@ -36,13 +34,32 @@ class AIlib:
# Calculate the partial derivative for that prop # Calculate the partial derivative for that prop
return dCost / dProp return dCost / dProp
def gradient( inp:np.array, obj, prop, theta ): def gradient( inp:np.array, obj, theta, layerIndex: int=0, obj1: None, obj2: None ):
# Calculate the gradient for that prop # Calculate the gradient for that prop
prop2 = prop + theta
# then create another instance of the object and compare
# calculate the diff between the new prop and old # Create new instances of the object
res = AIlib.think( inp, obj. ) if( !obj1 or !obj2 ):
obj1 = obj
obj2 = obj
obj2.weights[layerIndex] += theta # mutate the second object
obj2.bias[layerIndex] += theta
# Compare the two instances
res1 = AIlib.think( inp, obj1 )
cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost
res2 = AIlib.think( inp, obj2 )
cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost
# Get the usefull variables
dCost = cost2 - cost1
dWeight = obj2.weights[layerIndex] - obj1.weights[layerIndex]
dBias = obj2.bias[layerIndex] - obj1.bias[layerIndex]
# Calculate the gradient for the layer
weightDer = AIlib.propDer( dCost, dWeight )
biasDer = AIlib.propDer( dCost, dBias )
def mutateProp( prop:list, lr:float, gradient ): def mutateProp( prop:list, lr:float, gradient ):
newProp = [None] * len(prop) newProp = [None] * len(prop)

Loading…
Cancel
Save