|
|
@ -4,17 +4,15 @@ class AIlib: |
|
|
|
def sigmoid(x): |
|
|
|
def sigmoid(x): |
|
|
|
return 1/(1 + np.exp(-x)) |
|
|
|
return 1/(1 + np.exp(-x)) |
|
|
|
|
|
|
|
|
|
|
|
def sigmoid_der(x): |
|
|
|
|
|
|
|
return AIlib.sigmoid(x) * (1 - AIlib.sigmoid(x)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def correctFunc(inp:np.array): # generates the correct answer for the AI |
|
|
|
def correctFunc(inp:np.array): # generates the correct answer for the AI |
|
|
|
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values |
|
|
|
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values |
|
|
|
|
|
|
|
|
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
|
|
|
return (predicted - correct)**2 |
|
|
|
return (predicted - correct)**2 |
|
|
|
|
|
|
|
|
|
|
|
def calcCost_derv( predicted:np.array, correct:np.array ): |
|
|
|
def getThinkCost( inp:np.array, predicted:np.array ): |
|
|
|
return (predicted - correct)*2 |
|
|
|
corr = correctFunc(inp) |
|
|
|
|
|
|
|
return calcCost( predicted, corr ) |
|
|
|
|
|
|
|
|
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
|
|
|
# apply ranger with * and - |
|
|
|
# apply ranger with * and - |
|
|
@ -36,13 +34,32 @@ class AIlib: |
|
|
|
# Calculate the partial derivative for that prop |
|
|
|
# Calculate the partial derivative for that prop |
|
|
|
return dCost / dProp |
|
|
|
return dCost / dProp |
|
|
|
|
|
|
|
|
|
|
|
def gradient( inp:np.array, obj, prop, theta ): |
|
|
|
def gradient( inp:np.array, obj, theta, layerIndex: int=0, obj1: None, obj2: None ): |
|
|
|
# Calculate the gradient for that prop |
|
|
|
# Calculate the gradient for that prop |
|
|
|
prop2 = prop + theta |
|
|
|
|
|
|
|
# then create another instance of the object and compare |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# calculate the diff between the new prop and old |
|
|
|
# Create new instances of the object |
|
|
|
res = AIlib.think( inp, obj. ) |
|
|
|
if( !obj1 or !obj2 ): |
|
|
|
|
|
|
|
obj1 = obj |
|
|
|
|
|
|
|
obj2 = obj |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
obj2.weights[layerIndex] += theta # mutate the second object |
|
|
|
|
|
|
|
obj2.bias[layerIndex] += theta |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Compare the two instances |
|
|
|
|
|
|
|
res1 = AIlib.think( inp, obj1 ) |
|
|
|
|
|
|
|
cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res2 = AIlib.think( inp, obj2 ) |
|
|
|
|
|
|
|
cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Get the usefull variables |
|
|
|
|
|
|
|
dCost = cost2 - cost1 |
|
|
|
|
|
|
|
dWeight = obj2.weights[layerIndex] - obj1.weights[layerIndex] |
|
|
|
|
|
|
|
dBias = obj2.bias[layerIndex] - obj1.bias[layerIndex] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate the gradient for the layer |
|
|
|
|
|
|
|
weightDer = AIlib.propDer( dCost, dWeight ) |
|
|
|
|
|
|
|
biasDer = AIlib.propDer( dCost, dBias ) |
|
|
|
|
|
|
|
|
|
|
|
def mutateProp( prop:list, lr:float, gradient ): |
|
|
|
def mutateProp( prop:list, lr:float, gradient ): |
|
|
|
newProp = [None] * len(prop) |
|
|
|
newProp = [None] * len(prop) |
|
|
|