diff --git a/rgbAI/lib/func.py b/rgbAI/lib/func.py index cae22cd..d174b01 100644 --- a/rgbAI/lib/func.py +++ b/rgbAI/lib/func.py @@ -4,17 +4,15 @@ class AIlib: def sigmoid(x): return 1/(1 + np.exp(-x)) - def sigmoid_der(x): - return AIlib.sigmoid(x) * (1 - AIlib.sigmoid(x)) - def correctFunc(inp:np.array): # generates the correct answer for the AI return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad return (predicted - correct)**2 - def calcCost_derv( predicted:np.array, correct:np.array ): - return (predicted - correct)*2 + def getThinkCost( inp:np.array, predicted:np.array ): + corr = correctFunc(inp) + return calcCost( predicted, corr ) def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it # apply ranger with * and - @@ -36,13 +34,32 @@ class AIlib: # Calculate the partial derivative for that prop return dCost / dProp - def gradient( inp:np.array, obj, prop, theta ): + def gradient( inp:np.array, obj, theta, layerIndex: int=0, obj1: None, obj2: None ): # Calculate the gradient for that prop - prop2 = prop + theta - # then create another instance of the object and compare - # calculate the diff between the new prop and old - res = AIlib.think( inp, obj. ) + # Create new instances of the object + if( !obj1 or !obj2 ): + obj1 = obj + obj2 = obj + + obj2.weights[layerIndex] += theta # mutate the second object + obj2.bias[layerIndex] += theta + + # Compare the two instances + res1 = AIlib.think( inp, obj1 ) + cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost + + res2 = AIlib.think( inp, obj2 ) + cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost + + # Get the usefull variables + dCost = cost2 - cost1 + dWeight = obj2.weights[layerIndex] - obj1.weights[layerIndex] + dBias = obj2.bias[layerIndex] - obj1.bias[layerIndex] + + # Calculate the gradient for the layer + weightDer = AIlib.propDer( dCost, dWeight ) + biasDer = AIlib.propDer( dCost, dBias ) def mutateProp( prop:list, lr:float, gradient ): newProp = [None] * len(prop)