|
|
|
@ -2,111 +2,111 @@ import numpy as np |
|
|
|
|
from copy import deepcopy as copy |
|
|
|
|
|
|
|
|
|
class AIlib: |
|
|
|
|
def sigmoid(x): |
|
|
|
|
return 1/(1 + np.exp(-x)) |
|
|
|
|
|
|
|
|
|
def correctFunc(inp:np.array): # generates the correct answer for the AI |
|
|
|
|
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values |
|
|
|
|
def sigmoid(x): |
|
|
|
|
return 1/(1 + np.exp(-x)) |
|
|
|
|
|
|
|
|
|
def correctFunc(inp:np.array): # generates the correct answer for the AI |
|
|
|
|
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values |
|
|
|
|
|
|
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
|
|
|
|
costSum = 0 |
|
|
|
|
maxLen = len(correct) |
|
|
|
|
|
|
|
|
|
for i in range(maxLen): |
|
|
|
|
costSum += (predicted[i] - correct[i])**2 |
|
|
|
|
|
|
|
|
|
return costSum / maxLen |
|
|
|
|
|
|
|
|
|
def getThinkCost( inp:np.array, predicted:np.array ): |
|
|
|
|
corr = AIlib.correctFunc(inp) |
|
|
|
|
return AIlib.calcCost( predicted, corr ) |
|
|
|
|
|
|
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
|
|
|
|
# apply ranger with * and - |
|
|
|
|
mat = np.random.rand(x, y) - 0.25 |
|
|
|
|
return mat |
|
|
|
|
|
|
|
|
|
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe |
|
|
|
|
maxLayer = len(obj.weights) - 1 |
|
|
|
|
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
|
|
|
|
layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
|
|
|
|
|
|
|
|
|
if( layerIndex < maxLayer ): |
|
|
|
|
return AIlib.think( layer, obj, layerIndex + 1 ) |
|
|
|
|
else: |
|
|
|
|
out = np.squeeze(np.asarray(layer)) |
|
|
|
|
return out |
|
|
|
|
|
|
|
|
|
def propDer( dCost, dProp ): |
|
|
|
|
# Calculate the partial derivative for that prop |
|
|
|
|
return dCost / dProp |
|
|
|
|
|
|
|
|
|
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop |
|
|
|
|
# Check if grads exists, if not create the buffer |
|
|
|
|
if( not grads ): |
|
|
|
|
grads = [None] * (maxLayer+1) |
|
|
|
|
|
|
|
|
|
# Create new instances of the object |
|
|
|
|
if( not obj1 or not obj2 ): |
|
|
|
|
obj1 = copy(obj) # annoying way to create a new instance of the object |
|
|
|
|
obj2 = copy(obj) |
|
|
|
|
|
|
|
|
|
obj2.weights[layerIndex] += theta # mutate the second object |
|
|
|
|
obj2.bias[layerIndex] += theta |
|
|
|
|
|
|
|
|
|
# Compare the two instances |
|
|
|
|
res1 = AIlib.think( inp, obj1 ) |
|
|
|
|
cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost |
|
|
|
|
|
|
|
|
|
res2 = AIlib.think( inp, obj2 ) |
|
|
|
|
cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost |
|
|
|
|
|
|
|
|
|
# Actually calculate stuff |
|
|
|
|
dCost = cost2 - cost1 |
|
|
|
|
dWeight = obj2.weights[layerIndex] - obj1.weights[layerIndex] |
|
|
|
|
dBias = obj2.bias[layerIndex] - obj1.bias[layerIndex] |
|
|
|
|
|
|
|
|
|
# Calculate the gradient for the layer |
|
|
|
|
weightDer = AIlib.propDer( dCost, dWeight ) |
|
|
|
|
biasDer = AIlib.propDer( dCost, dBias ) |
|
|
|
|
|
|
|
|
|
# Append the gradients to the list |
|
|
|
|
grads[layerIndex] = { |
|
|
|
|
"weight": weightDer, |
|
|
|
|
"bias": biasDer |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
newLayer = layerIndex + 1 |
|
|
|
|
if( newLayer <= maxLayer ): |
|
|
|
|
return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
|
|
|
|
else: |
|
|
|
|
return grads, res1, cost1 |
|
|
|
|
|
|
|
|
|
def mutateProps( inpObj, maxLen:int, gradient:list ): |
|
|
|
|
obj = copy(inpObj) |
|
|
|
|
for i in range(maxLen): |
|
|
|
|
obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights |
|
|
|
|
obj.bias[i] -= obj.learningrate * gradient[i]["bias"] |
|
|
|
|
|
|
|
|
|
return obj |
|
|
|
|
|
|
|
|
|
def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): |
|
|
|
|
# Calculate the derivative for: |
|
|
|
|
# Cost in respect to weights |
|
|
|
|
# Cost in respect to biases |
|
|
|
|
|
|
|
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
|
|
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
|
|
|
|
|
|
|
|
|
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample |
|
|
|
|
|
|
|
|
|
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
|
|
|
|
maxLen = len(obj.bias) |
|
|
|
|
grads, res, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
|
|
|
|
obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round |
|
|
|
|
print("Cost:", curCost, "|", inp, res) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("DONE\n") |
|
|
|
|
print(obj.weights) |
|
|
|
|
print(obj.bias) |
|
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
|
|
|
|
costSum = 0 |
|
|
|
|
maxLen = len(correct) |
|
|
|
|
|
|
|
|
|
for i in range(maxLen): |
|
|
|
|
costSum += (predicted[i] - correct[i])**2 |
|
|
|
|
|
|
|
|
|
return costSum / maxLen |
|
|
|
|
|
|
|
|
|
def getThinkCost( inp:np.array, predicted:np.array ): |
|
|
|
|
corr = AIlib.correctFunc(inp) |
|
|
|
|
return AIlib.calcCost( predicted, corr ) |
|
|
|
|
|
|
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
|
|
|
|
# apply ranger with * and - |
|
|
|
|
mat = np.random.rand(x, y) - 0.25 |
|
|
|
|
return mat |
|
|
|
|
|
|
|
|
|
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe |
|
|
|
|
maxLayer = len(obj.weights) - 1 |
|
|
|
|
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
|
|
|
|
layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
|
|
|
|
|
|
|
|
|
if( layerIndex < maxLayer ): |
|
|
|
|
return AIlib.think( layer, obj, layerIndex + 1 ) |
|
|
|
|
else: |
|
|
|
|
out = np.squeeze(np.asarray(layer)) |
|
|
|
|
return out |
|
|
|
|
|
|
|
|
|
def propDer( dCost, dProp ): |
|
|
|
|
# Calculate the partial derivative for that prop |
|
|
|
|
return dCost / dProp |
|
|
|
|
|
|
|
|
|
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop |
|
|
|
|
# Check if grads exists, if not create the buffer |
|
|
|
|
if( not grads ): |
|
|
|
|
grads = [None] * (maxLayer+1) |
|
|
|
|
|
|
|
|
|
# Create new instances of the object |
|
|
|
|
if( not obj1 or not obj2 ): |
|
|
|
|
obj1 = copy(obj) # annoying way to create a new instance of the object |
|
|
|
|
obj2 = copy(obj) |
|
|
|
|
|
|
|
|
|
obj2.weights[layerIndex] += theta # mutate the second object |
|
|
|
|
obj2.bias[layerIndex] += theta |
|
|
|
|
|
|
|
|
|
# Compare the two instances |
|
|
|
|
res1 = AIlib.think( inp, obj1 ) |
|
|
|
|
cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost |
|
|
|
|
|
|
|
|
|
res2 = AIlib.think( inp, obj2 ) |
|
|
|
|
cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost |
|
|
|
|
|
|
|
|
|
# Actually calculate stuff |
|
|
|
|
dCost = cost2 - cost1 |
|
|
|
|
dWeight = obj2.weights[layerIndex] - obj1.weights[layerIndex] |
|
|
|
|
dBias = obj2.bias[layerIndex] - obj1.bias[layerIndex] |
|
|
|
|
|
|
|
|
|
# Calculate the gradient for the layer |
|
|
|
|
weightDer = AIlib.propDer( dCost, dWeight ) |
|
|
|
|
biasDer = AIlib.propDer( dCost, dBias ) |
|
|
|
|
|
|
|
|
|
# Append the gradients to the list |
|
|
|
|
grads[layerIndex] = { |
|
|
|
|
"weight": weightDer, |
|
|
|
|
"bias": biasDer |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
newLayer = layerIndex + 1 |
|
|
|
|
if( newLayer <= maxLayer ): |
|
|
|
|
return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
|
|
|
|
else: |
|
|
|
|
return grads, res1, cost1 |
|
|
|
|
|
|
|
|
|
def mutateProps( inpObj, maxLen:int, gradient:list ): |
|
|
|
|
obj = copy(inpObj) |
|
|
|
|
for i in range(maxLen): |
|
|
|
|
obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights |
|
|
|
|
obj.bias[i] -= obj.learningrate * gradient[i]["bias"] |
|
|
|
|
|
|
|
|
|
return obj |
|
|
|
|
|
|
|
|
|
def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): |
|
|
|
|
# Calculate the derivative for: |
|
|
|
|
# Cost in respect to weights |
|
|
|
|
# Cost in respect to biases |
|
|
|
|
|
|
|
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
|
|
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
|
|
|
|
|
|
|
|
|
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample |
|
|
|
|
|
|
|
|
|
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
|
|
|
|
maxLen = len(obj.bias) |
|
|
|
|
grads, res, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
|
|
|
|
obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round |
|
|
|
|
print("Cost:", curCost, "|", inp, res) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("DONE\n") |
|
|
|
|
print(obj.weights) |
|
|
|
|
print(obj.bias) |
|
|
|
|