parent
606e473d1e
commit
eac56f983d
Binary file not shown.
@ -0,0 +1,165 @@ |
||||
import numpy as np |
||||
from copy import deepcopy as copy |
||||
|
||||
def sigmoid(x): |
||||
return 1/(1 + np.exp(-x)) |
||||
|
||||
def correctFunc(inp:np.array): # generates the correct answer for the AI |
||||
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values |
||||
|
||||
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
||||
costSum = 0 |
||||
maxLen = len(correct) |
||||
|
||||
for i in range(maxLen): |
||||
costSum += abs((predicted[i] - correct[i])) |
||||
|
||||
return costSum / maxLen |
||||
|
||||
def getThinkCost( inp:np.array, predicted:np.array ): |
||||
corr = correctFunc(inp) |
||||
return calcCost( predicted, corr ) |
||||
|
||||
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
||||
# apply ranger with * and - |
||||
mat = np.random.rand(x, y) - 0.25 |
||||
return mat |
||||
|
||||
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe |
||||
maxLayer = len(obj.weights) - 1 |
||||
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
||||
layer = sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
||||
|
||||
if( layerIndex < maxLayer ): |
||||
return think( layer, obj, layerIndex + 1 ) |
||||
else: |
||||
out = np.squeeze(np.asarray(layer)) |
||||
return out |
||||
|
||||
def propDer( dCost, dProp ): |
||||
# Calculate the partial derivative for that prop |
||||
return dCost / dProp |
||||
|
||||
def compareAIobjects( inp, obj1, obj2 ): |
||||
# Compare the two instances |
||||
res1 = think( inp, obj1 ) |
||||
cost1 = getThinkCost( inp, res1 ) # get the cost |
||||
|
||||
res2 = think( inp, obj2 ) |
||||
cost2 = getThinkCost( inp, res2 ) # get the second cost |
||||
|
||||
# Actually calculate stuff |
||||
dCost = cost2 - cost1 |
||||
return dCost, cost1 |
||||
|
||||
def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ): |
||||
# Create new a instance of the object |
||||
obj2 = copy(obj) # annoying way to create a new instance of the object |
||||
|
||||
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron |
||||
dCost, curCost = compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights |
||||
|
||||
return dCost, curCost |
||||
|
||||
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ): |
||||
obj2 = copy(obj) |
||||
|
||||
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias |
||||
dCost, curCost = compareAIobjects( inp, obj, obj2 ) |
||||
|
||||
return dCost, curCost |
||||
|
||||
def getChangeInCost( obj, inp, theta, layerIndex ): |
||||
mirrorObj = copy(obj) |
||||
|
||||
# Fill the buffer with None so that the dCost can replace it later |
||||
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder |
||||
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape ) |
||||
|
||||
# Get the cost change for the weights |
||||
weightLenX = len(dCost_W) |
||||
weightLenY = len(dCost_W[0]) |
||||
|
||||
for x in range(weightLenX): # get the dCost for each x,y |
||||
for y in range(weightLenY): |
||||
dCost_W[x][y], curCostWeight = compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) |
||||
|
||||
# Get the cost change for the biases |
||||
biasLenY = len(dCost_B[0]) |
||||
for index in range(biasLenY): |
||||
dCost_B[0][index], curCostBias = compareInstanceBias( obj, inp, theta, layerIndex, index ) |
||||
|
||||
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 |
||||
|
||||
|
||||
|
||||
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop |
||||
# Check if grads exists, if not create the buffer |
||||
if( not grads ): |
||||
grads = [None] * (maxLayer+1) |
||||
|
||||
dCost_W, dCost_B, meanCurCost = getChangeInCost( obj, inp, theta, layerIndex ) |
||||
|
||||
# Calculate the gradient for the layer |
||||
weightDer = propDer( dCost_W, theta ) |
||||
biasDer = propDer( dCost_B, theta ) |
||||
|
||||
# Append the gradients to the list |
||||
grads[layerIndex] = { |
||||
"weight": weightDer, |
||||
"bias": biasDer |
||||
} |
||||
|
||||
newLayer = layerIndex + 1 |
||||
if( newLayer <= maxLayer ): |
||||
return gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
||||
else: |
||||
return grads, dCost_W, dCost_B, meanCurCost |
||||
|
||||
def calculateSteepness( cost:float, gradient:np.matrix ): |
||||
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length) |
||||
ddCost = cost / gradLen |
||||
|
||||
return np.arcsin( ddCost ) / 180 # the gradients "angle" cannot become steeper than 180. |
||||
|
||||
def getLearningRate( cost:float, gradient:dict, maxLen:int ): |
||||
learningrate = { |
||||
"weight": [], |
||||
"bias": [] |
||||
} |
||||
|
||||
for i in range(maxLen): |
||||
learningrate["weights"][i] = calculateSteepness( cost, gradient["weight"][i] ) |
||||
learningrate["bias"][i] = calculateSteepness( cost, gradient["bias"][i] ) |
||||
|
||||
|
||||
def mutateProps( inpObj, curCost:float, maxLen:int, gradient:list ): |
||||
obj = copy(inpObj) |
||||
|
||||
for i in range(maxLen): |
||||
obj.weights[i] -= getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["weight"] # mutate the weights |
||||
obj.bias[i] -= getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["bias"] |
||||
|
||||
return obj |
||||
|
||||
def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): |
||||
# Calculate the derivative for: |
||||
# Cost in respect to weights |
||||
# Cost in respect to biases |
||||
|
||||
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
||||
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
||||
|
||||
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample |
||||
|
||||
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
||||
maxLen = len(obj.bias) |
||||
grads, costW, costB, curCost = gradient( inp, obj, theta, maxLen - 1 ) |
||||
|
||||
obj = mutateProps( obj, curCost, maxLen, grads ) # mutate the props for next round |
||||
print(f"Cost: {curCost}") |
||||
|
||||
|
||||
print("DONE\n") |
||||
print(obj.weights) |
||||
print(obj.bias) |
@ -1,166 +0,0 @@ |
||||
import numpy as np |
||||
from copy import deepcopy as copy |
||||
|
||||
class AIlib: |
||||
def sigmoid(x): |
||||
return 1/(1 + np.exp(-x)) |
||||
|
||||
def correctFunc(inp:np.array): # generates the correct answer for the AI |
||||
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values |
||||
|
||||
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
||||
costSum = 0 |
||||
maxLen = len(correct) |
||||
|
||||
for i in range(maxLen): |
||||
costSum += abs((predicted[i] - correct[i])) |
||||
|
||||
return costSum / maxLen |
||||
|
||||
def getThinkCost( inp:np.array, predicted:np.array ): |
||||
corr = AIlib.correctFunc(inp) |
||||
return AIlib.calcCost( predicted, corr ) |
||||
|
||||
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
||||
# apply ranger with * and - |
||||
mat = np.random.rand(x, y) - 0.25 |
||||
return mat |
||||
|
||||
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe |
||||
maxLayer = len(obj.weights) - 1 |
||||
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
||||
layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
||||
|
||||
if( layerIndex < maxLayer ): |
||||
return AIlib.think( layer, obj, layerIndex + 1 ) |
||||
else: |
||||
out = np.squeeze(np.asarray(layer)) |
||||
return out |
||||
|
||||
def propDer( dCost, dProp ): |
||||
# Calculate the partial derivative for that prop |
||||
return dCost / dProp |
||||
|
||||
def compareAIobjects( inp, obj1, obj2 ): |
||||
# Compare the two instances |
||||
res1 = AIlib.think( inp, obj1 ) |
||||
cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost |
||||
|
||||
res2 = AIlib.think( inp, obj2 ) |
||||
cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost |
||||
|
||||
# Actually calculate stuff |
||||
dCost = cost2 - cost1 |
||||
return dCost, cost1 |
||||
|
||||
def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ): |
||||
# Create new a instance of the object |
||||
obj2 = copy(obj) # annoying way to create a new instance of the object |
||||
|
||||
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron |
||||
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights |
||||
|
||||
return dCost, curCost |
||||
|
||||
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ): |
||||
obj2 = copy(obj) |
||||
|
||||
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias |
||||
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) |
||||
|
||||
return dCost, curCost |
||||
|
||||
def getChangeInCost( obj, inp, theta, layerIndex ): |
||||
mirrorObj = copy(obj) |
||||
|
||||
# Fill the buffer with None so that the dCost can replace it later |
||||
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder |
||||
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape ) |
||||
|
||||
# Get the cost change for the weights |
||||
weightLenX = len(dCost_W) |
||||
weightLenY = len(dCost_W[0]) |
||||
|
||||
for x in range(weightLenX): # get the dCost for each x,y |
||||
for y in range(weightLenY): |
||||
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) |
||||
|
||||
# Get the cost change for the biases |
||||
biasLenY = len(dCost_B[0]) |
||||
for index in range(biasLenY): |
||||
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( obj, inp, theta, layerIndex, index ) |
||||
|
||||
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 |
||||
|
||||
|
||||
|
||||
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop |
||||
# Check if grads exists, if not create the buffer |
||||
if( not grads ): |
||||
grads = [None] * (maxLayer+1) |
||||
|
||||
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( obj, inp, theta, layerIndex ) |
||||
|
||||
# Calculate the gradient for the layer |
||||
weightDer = AIlib.propDer( dCost_W, theta ) |
||||
biasDer = AIlib.propDer( dCost_B, theta ) |
||||
|
||||
# Append the gradients to the list |
||||
grads[layerIndex] = { |
||||
"weight": weightDer, |
||||
"bias": biasDer |
||||
} |
||||
|
||||
newLayer = layerIndex + 1 |
||||
if( newLayer <= maxLayer ): |
||||
return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
||||
else: |
||||
return grads, dCost_W, dCost_B, meanCurCost |
||||
|
||||
def calculateSteepness( cost:float, gradient:np.matrix ): |
||||
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length) |
||||
ddCost = cost / gradLen |
||||
|
||||
return np.arcsin( ddCost ) / 180 # the gradients "angle" cannot become steeper than 180. |
||||
|
||||
def getLearningRate( cost:float, gradient:dict, maxLen:int ): |
||||
learningrate = { |
||||
"weight": [], |
||||
"bias": [] |
||||
} |
||||
|
||||
for i in range(maxLen): |
||||
learningrate["weights"][i] = AIlib.calculateSteepness( cost, gradient["weight"][i] ) |
||||
learningrate["bias"][i] = AIlib.calculateSteepness( cost, gradient["bias"][i] ) |
||||
|
||||
|
||||
def mutateProps( inpObj, curCost:float, maxLen:int, gradient:list ): |
||||
obj = copy(inpObj) |
||||
|
||||
for i in range(maxLen): |
||||
obj.weights[i] -= AIlib.getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["weight"] # mutate the weights |
||||
obj.bias[i] -= AIlib.getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["bias"] |
||||
|
||||
return obj |
||||
|
||||
def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): |
||||
# Calculate the derivative for: |
||||
# Cost in respect to weights |
||||
# Cost in respect to biases |
||||
|
||||
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
||||
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
||||
|
||||
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample |
||||
|
||||
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
||||
maxLen = len(obj.bias) |
||||
grads, costW, costB, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
||||
|
||||
obj = AIlib.mutateProps( obj, curCost, maxLen, grads ) # mutate the props for next round |
||||
print(f"Cost: {curCost}") |
||||
|
||||
|
||||
print("DONE\n") |
||||
print(obj.weights) |
||||
print(obj.bias) |
Loading…
Reference in new issue