parent
606e473d1e
commit
eac56f983d
Binary file not shown.
@ -0,0 +1,165 @@ |
|||||||
|
import numpy as np |
||||||
|
from copy import deepcopy as copy |
||||||
|
|
||||||
|
def sigmoid(x): |
||||||
|
return 1/(1 + np.exp(-x)) |
||||||
|
|
||||||
|
def correctFunc(inp:np.array): # generates the correct answer for the AI |
||||||
|
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values |
||||||
|
|
||||||
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
||||||
|
costSum = 0 |
||||||
|
maxLen = len(correct) |
||||||
|
|
||||||
|
for i in range(maxLen): |
||||||
|
costSum += abs((predicted[i] - correct[i])) |
||||||
|
|
||||||
|
return costSum / maxLen |
||||||
|
|
||||||
|
def getThinkCost( inp:np.array, predicted:np.array ): |
||||||
|
corr = correctFunc(inp) |
||||||
|
return calcCost( predicted, corr ) |
||||||
|
|
||||||
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
||||||
|
# apply ranger with * and - |
||||||
|
mat = np.random.rand(x, y) - 0.25 |
||||||
|
return mat |
||||||
|
|
||||||
|
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe |
||||||
|
maxLayer = len(obj.weights) - 1 |
||||||
|
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
||||||
|
layer = sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
||||||
|
|
||||||
|
if( layerIndex < maxLayer ): |
||||||
|
return think( layer, obj, layerIndex + 1 ) |
||||||
|
else: |
||||||
|
out = np.squeeze(np.asarray(layer)) |
||||||
|
return out |
||||||
|
|
||||||
|
def propDer( dCost, dProp ): |
||||||
|
# Calculate the partial derivative for that prop |
||||||
|
return dCost / dProp |
||||||
|
|
||||||
|
def compareAIobjects( inp, obj1, obj2 ): |
||||||
|
# Compare the two instances |
||||||
|
res1 = think( inp, obj1 ) |
||||||
|
cost1 = getThinkCost( inp, res1 ) # get the cost |
||||||
|
|
||||||
|
res2 = think( inp, obj2 ) |
||||||
|
cost2 = getThinkCost( inp, res2 ) # get the second cost |
||||||
|
|
||||||
|
# Actually calculate stuff |
||||||
|
dCost = cost2 - cost1 |
||||||
|
return dCost, cost1 |
||||||
|
|
||||||
|
def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ): |
||||||
|
# Create new a instance of the object |
||||||
|
obj2 = copy(obj) # annoying way to create a new instance of the object |
||||||
|
|
||||||
|
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron |
||||||
|
dCost, curCost = compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights |
||||||
|
|
||||||
|
return dCost, curCost |
||||||
|
|
||||||
|
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ): |
||||||
|
obj2 = copy(obj) |
||||||
|
|
||||||
|
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias |
||||||
|
dCost, curCost = compareAIobjects( inp, obj, obj2 ) |
||||||
|
|
||||||
|
return dCost, curCost |
||||||
|
|
||||||
|
def getChangeInCost( obj, inp, theta, layerIndex ): |
||||||
|
mirrorObj = copy(obj) |
||||||
|
|
||||||
|
# Fill the buffer with None so that the dCost can replace it later |
||||||
|
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder |
||||||
|
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape ) |
||||||
|
|
||||||
|
# Get the cost change for the weights |
||||||
|
weightLenX = len(dCost_W) |
||||||
|
weightLenY = len(dCost_W[0]) |
||||||
|
|
||||||
|
for x in range(weightLenX): # get the dCost for each x,y |
||||||
|
for y in range(weightLenY): |
||||||
|
dCost_W[x][y], curCostWeight = compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) |
||||||
|
|
||||||
|
# Get the cost change for the biases |
||||||
|
biasLenY = len(dCost_B[0]) |
||||||
|
for index in range(biasLenY): |
||||||
|
dCost_B[0][index], curCostBias = compareInstanceBias( obj, inp, theta, layerIndex, index ) |
||||||
|
|
||||||
|
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop |
||||||
|
# Check if grads exists, if not create the buffer |
||||||
|
if( not grads ): |
||||||
|
grads = [None] * (maxLayer+1) |
||||||
|
|
||||||
|
dCost_W, dCost_B, meanCurCost = getChangeInCost( obj, inp, theta, layerIndex ) |
||||||
|
|
||||||
|
# Calculate the gradient for the layer |
||||||
|
weightDer = propDer( dCost_W, theta ) |
||||||
|
biasDer = propDer( dCost_B, theta ) |
||||||
|
|
||||||
|
# Append the gradients to the list |
||||||
|
grads[layerIndex] = { |
||||||
|
"weight": weightDer, |
||||||
|
"bias": biasDer |
||||||
|
} |
||||||
|
|
||||||
|
newLayer = layerIndex + 1 |
||||||
|
if( newLayer <= maxLayer ): |
||||||
|
return gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
||||||
|
else: |
||||||
|
return grads, dCost_W, dCost_B, meanCurCost |
||||||
|
|
||||||
|
def calculateSteepness( cost:float, gradient:np.matrix ): |
||||||
|
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length) |
||||||
|
ddCost = cost / gradLen |
||||||
|
|
||||||
|
return np.arcsin( ddCost ) / 180 # the gradients "angle" cannot become steeper than 180. |
||||||
|
|
||||||
|
def getLearningRate( cost:float, gradient:dict, maxLen:int ): |
||||||
|
learningrate = { |
||||||
|
"weight": [], |
||||||
|
"bias": [] |
||||||
|
} |
||||||
|
|
||||||
|
for i in range(maxLen): |
||||||
|
learningrate["weights"][i] = calculateSteepness( cost, gradient["weight"][i] ) |
||||||
|
learningrate["bias"][i] = calculateSteepness( cost, gradient["bias"][i] ) |
||||||
|
|
||||||
|
|
||||||
|
def mutateProps( inpObj, curCost:float, maxLen:int, gradient:list ): |
||||||
|
obj = copy(inpObj) |
||||||
|
|
||||||
|
for i in range(maxLen): |
||||||
|
obj.weights[i] -= getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["weight"] # mutate the weights |
||||||
|
obj.bias[i] -= getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["bias"] |
||||||
|
|
||||||
|
return obj |
||||||
|
|
||||||
|
def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): |
||||||
|
# Calculate the derivative for: |
||||||
|
# Cost in respect to weights |
||||||
|
# Cost in respect to biases |
||||||
|
|
||||||
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
||||||
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
||||||
|
|
||||||
|
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample |
||||||
|
|
||||||
|
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
||||||
|
maxLen = len(obj.bias) |
||||||
|
grads, costW, costB, curCost = gradient( inp, obj, theta, maxLen - 1 ) |
||||||
|
|
||||||
|
obj = mutateProps( obj, curCost, maxLen, grads ) # mutate the props for next round |
||||||
|
print(f"Cost: {curCost}") |
||||||
|
|
||||||
|
|
||||||
|
print("DONE\n") |
||||||
|
print(obj.weights) |
||||||
|
print(obj.bias) |
@ -1,166 +0,0 @@ |
|||||||
import numpy as np |
|
||||||
from copy import deepcopy as copy |
|
||||||
|
|
||||||
class AIlib: |
|
||||||
def sigmoid(x): |
|
||||||
return 1/(1 + np.exp(-x)) |
|
||||||
|
|
||||||
def correctFunc(inp:np.array): # generates the correct answer for the AI |
|
||||||
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values |
|
||||||
|
|
||||||
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
|
||||||
costSum = 0 |
|
||||||
maxLen = len(correct) |
|
||||||
|
|
||||||
for i in range(maxLen): |
|
||||||
costSum += abs((predicted[i] - correct[i])) |
|
||||||
|
|
||||||
return costSum / maxLen |
|
||||||
|
|
||||||
def getThinkCost( inp:np.array, predicted:np.array ): |
|
||||||
corr = AIlib.correctFunc(inp) |
|
||||||
return AIlib.calcCost( predicted, corr ) |
|
||||||
|
|
||||||
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
|
||||||
# apply ranger with * and - |
|
||||||
mat = np.random.rand(x, y) - 0.25 |
|
||||||
return mat |
|
||||||
|
|
||||||
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe |
|
||||||
maxLayer = len(obj.weights) - 1 |
|
||||||
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
|
||||||
layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
|
||||||
|
|
||||||
if( layerIndex < maxLayer ): |
|
||||||
return AIlib.think( layer, obj, layerIndex + 1 ) |
|
||||||
else: |
|
||||||
out = np.squeeze(np.asarray(layer)) |
|
||||||
return out |
|
||||||
|
|
||||||
def propDer( dCost, dProp ): |
|
||||||
# Calculate the partial derivative for that prop |
|
||||||
return dCost / dProp |
|
||||||
|
|
||||||
def compareAIobjects( inp, obj1, obj2 ): |
|
||||||
# Compare the two instances |
|
||||||
res1 = AIlib.think( inp, obj1 ) |
|
||||||
cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost |
|
||||||
|
|
||||||
res2 = AIlib.think( inp, obj2 ) |
|
||||||
cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost |
|
||||||
|
|
||||||
# Actually calculate stuff |
|
||||||
dCost = cost2 - cost1 |
|
||||||
return dCost, cost1 |
|
||||||
|
|
||||||
def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ): |
|
||||||
# Create new a instance of the object |
|
||||||
obj2 = copy(obj) # annoying way to create a new instance of the object |
|
||||||
|
|
||||||
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron |
|
||||||
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights |
|
||||||
|
|
||||||
return dCost, curCost |
|
||||||
|
|
||||||
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ): |
|
||||||
obj2 = copy(obj) |
|
||||||
|
|
||||||
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias |
|
||||||
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) |
|
||||||
|
|
||||||
return dCost, curCost |
|
||||||
|
|
||||||
def getChangeInCost( obj, inp, theta, layerIndex ): |
|
||||||
mirrorObj = copy(obj) |
|
||||||
|
|
||||||
# Fill the buffer with None so that the dCost can replace it later |
|
||||||
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder |
|
||||||
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape ) |
|
||||||
|
|
||||||
# Get the cost change for the weights |
|
||||||
weightLenX = len(dCost_W) |
|
||||||
weightLenY = len(dCost_W[0]) |
|
||||||
|
|
||||||
for x in range(weightLenX): # get the dCost for each x,y |
|
||||||
for y in range(weightLenY): |
|
||||||
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) |
|
||||||
|
|
||||||
# Get the cost change for the biases |
|
||||||
biasLenY = len(dCost_B[0]) |
|
||||||
for index in range(biasLenY): |
|
||||||
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( obj, inp, theta, layerIndex, index ) |
|
||||||
|
|
||||||
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop |
|
||||||
# Check if grads exists, if not create the buffer |
|
||||||
if( not grads ): |
|
||||||
grads = [None] * (maxLayer+1) |
|
||||||
|
|
||||||
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( obj, inp, theta, layerIndex ) |
|
||||||
|
|
||||||
# Calculate the gradient for the layer |
|
||||||
weightDer = AIlib.propDer( dCost_W, theta ) |
|
||||||
biasDer = AIlib.propDer( dCost_B, theta ) |
|
||||||
|
|
||||||
# Append the gradients to the list |
|
||||||
grads[layerIndex] = { |
|
||||||
"weight": weightDer, |
|
||||||
"bias": biasDer |
|
||||||
} |
|
||||||
|
|
||||||
newLayer = layerIndex + 1 |
|
||||||
if( newLayer <= maxLayer ): |
|
||||||
return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
|
||||||
else: |
|
||||||
return grads, dCost_W, dCost_B, meanCurCost |
|
||||||
|
|
||||||
def calculateSteepness( cost:float, gradient:np.matrix ): |
|
||||||
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length) |
|
||||||
ddCost = cost / gradLen |
|
||||||
|
|
||||||
return np.arcsin( ddCost ) / 180 # the gradients "angle" cannot become steeper than 180. |
|
||||||
|
|
||||||
def getLearningRate( cost:float, gradient:dict, maxLen:int ): |
|
||||||
learningrate = { |
|
||||||
"weight": [], |
|
||||||
"bias": [] |
|
||||||
} |
|
||||||
|
|
||||||
for i in range(maxLen): |
|
||||||
learningrate["weights"][i] = AIlib.calculateSteepness( cost, gradient["weight"][i] ) |
|
||||||
learningrate["bias"][i] = AIlib.calculateSteepness( cost, gradient["bias"][i] ) |
|
||||||
|
|
||||||
|
|
||||||
def mutateProps( inpObj, curCost:float, maxLen:int, gradient:list ): |
|
||||||
obj = copy(inpObj) |
|
||||||
|
|
||||||
for i in range(maxLen): |
|
||||||
obj.weights[i] -= AIlib.getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["weight"] # mutate the weights |
|
||||||
obj.bias[i] -= AIlib.getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["bias"] |
|
||||||
|
|
||||||
return obj |
|
||||||
|
|
||||||
def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): |
|
||||||
# Calculate the derivative for: |
|
||||||
# Cost in respect to weights |
|
||||||
# Cost in respect to biases |
|
||||||
|
|
||||||
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
|
||||||
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
|
||||||
|
|
||||||
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample |
|
||||||
|
|
||||||
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
|
||||||
maxLen = len(obj.bias) |
|
||||||
grads, costW, costB, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
|
||||||
|
|
||||||
obj = AIlib.mutateProps( obj, curCost, maxLen, grads ) # mutate the props for next round |
|
||||||
print(f"Cost: {curCost}") |
|
||||||
|
|
||||||
|
|
||||||
print("DONE\n") |
|
||||||
print(obj.weights) |
|
||||||
print(obj.bias) |
|
Loading…
Reference in new issue