|
|
@ -119,28 +119,34 @@ def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, g |
|
|
|
def calculateSteepness( cost:float, gradient:np.matrix ): |
|
|
|
def calculateSteepness( cost:float, gradient:np.matrix ): |
|
|
|
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length) |
|
|
|
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length) |
|
|
|
ddCost = cost / gradLen |
|
|
|
ddCost = cost / gradLen |
|
|
|
|
|
|
|
out = np.log10(ddCost) |
|
|
|
|
|
|
|
|
|
|
|
return np.arcsin( ddCost ) / 180 # the gradients "angle" cannot become steeper than 180. |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
def getLearningRate( cost:float, gradient:dict, maxLen:int ): |
|
|
|
def getLearningRate( cost:float, gradient:np.matrix, maxLen:int ): |
|
|
|
learningrate = { |
|
|
|
learningrate = { |
|
|
|
"weight": [], |
|
|
|
"weight": [None] * maxLen, |
|
|
|
"bias": [] |
|
|
|
"bias": [None] * maxLen |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
for i in range(maxLen): |
|
|
|
for i in range(maxLen): |
|
|
|
learningrate["weights"][i] = calculateSteepness( cost, gradient["weight"][i] ) |
|
|
|
learningrate["weight"][i] = calculateSteepness( cost, gradient ) |
|
|
|
learningrate["bias"][i] = calculateSteepness( cost, gradient["bias"][i] ) |
|
|
|
learningrate["bias"][i] = calculateSteepness( cost, gradient ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return learningrate |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mutateProps( inpObj, curCost:float, maxLen:int, gradient:list ): |
|
|
|
def mutateProps( inpObj, curCost:float, maxLayer:int, gradient:list ): |
|
|
|
obj = copy(inpObj) |
|
|
|
obj = copy(inpObj) |
|
|
|
|
|
|
|
|
|
|
|
for i in range(maxLen): |
|
|
|
for layer in range(maxLayer): |
|
|
|
# obj.weights[i] -= getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["weight"] # mutate the weights |
|
|
|
lr = getLearningRate( curCost, gradient[layer]["weight"], maxLayer ) |
|
|
|
# obj.bias[i] -= getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["bias"] |
|
|
|
print(lr) |
|
|
|
obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights |
|
|
|
|
|
|
|
obj.bias[i] -= obj.learningrate * gradient[i]["bias"] |
|
|
|
obj.weights[layer] -= lr["weight"] * gradient[layer]["weight"] # mutate the weights |
|
|
|
|
|
|
|
obj.bias[layer] -= lr["bias"] * gradient[layer]["bias"] |
|
|
|
|
|
|
|
# obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights |
|
|
|
|
|
|
|
# obj.bias[i] -= obj.learningrate * gradient[i]["bias"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return obj |
|
|
|
return obj |
|
|
|