|
|
|
@ -7,11 +7,11 @@ class rgb(object): |
|
|
|
|
|
|
|
|
|
if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones |
|
|
|
|
print("Generating weights and biases...") |
|
|
|
|
self.weights = [ ai.genRandomMatrix(3, 8), ai.genRandomMatrix(8, 8), ai.genRandomMatrix(8, 3) ] # array of matrices of weights |
|
|
|
|
self.weights = [ ai.genRandomMatrix(3, 8), ai.genRandomMatrix(8, 8), ai.genRandomMatrix(8, 8), ai.genRandomMatrix(8, 3) ] # array of matrices of weights |
|
|
|
|
# 3 input neurons -> 8 hidden neurons -> 8 hidden neurons -> 3 output neurons |
|
|
|
|
|
|
|
|
|
# Generate the biases |
|
|
|
|
self.bias = [ ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 3) ] |
|
|
|
|
self.bias = [ ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 3) ] |
|
|
|
|
# This doesn't look very good, but it works so... |
|
|
|
|
|
|
|
|
|
self.learningrate = 0.01 # the learning rate of this ai |
|
|
|
@ -29,7 +29,7 @@ class rgb(object): |
|
|
|
|
return cost |
|
|
|
|
|
|
|
|
|
def learn( self ): |
|
|
|
|
ai.learn( 3, 0.0001, self, 0.001 ) |
|
|
|
|
ai.learn( 3, 0.0001, self, 0.000001 ) |
|
|
|
|
|
|
|
|
|
def think( self, inp:np.array ): |
|
|
|
|
print("\n-Input-") |
|
|
|
|