Fixed bugs and fixed cost func

pull/1/head
E. Almqvist 4 years ago
parent bb7297a676
commit 9cb11da281
  1. 23
      rgbAI/lib/func.py

@ -8,11 +8,17 @@ class AIlib:
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
return (predicted - correct)**2 costSum = 0
maxLen = len(correct)
for i in range(maxLen):
costSum += (predicted[i] - correct[i])**2
return costSum / maxLen
def getThinkCost( inp:np.array, predicted:np.array ): def getThinkCost( inp:np.array, predicted:np.array ):
corr = correctFunc(inp) corr = AIlib.correctFunc(inp)
return calcCost( predicted, corr ) return AIlib.calcCost( predicted, corr )
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
# apply ranger with * and - # apply ranger with * and -
@ -32,13 +38,13 @@ class AIlib:
def propDer( dCost, dProp ): def propDer( dCost, dProp ):
# Calculate the partial derivative for that prop # Calculate the partial derivative for that prop
print("################")
print(dCost, dProp)
return dCost / dProp return dCost / dProp
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads: list=[], obj1=None, obj2=None ): def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads: list=[], obj1=None, obj2=None ): # Calculate the gradient for that prop
# Calculate the gradient for that prop
# Create new instances of the object # Create new instances of the object
if( !obj1 or !obj2 ): if( not obj1 or not obj2 ):
obj1 = obj obj1 = obj
obj2 = obj obj2 = obj
@ -88,4 +94,7 @@ class AIlib:
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] # i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ]
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff # So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff
grads = AIlib.gradient( inp, obj, theta, len(obj.bias) - 1 )
print("####\n\n\n\n")
print(grads)

Loading…
Cancel
Save