|
|
|
@ -21,24 +21,28 @@ class AIlib: |
|
|
|
|
mat = np.random.rand(x, y) - 0.25 |
|
|
|
|
return mat |
|
|
|
|
|
|
|
|
|
def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe |
|
|
|
|
maxLayer = len(weights) - 1 |
|
|
|
|
weightedLayer = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights |
|
|
|
|
layer = AIlib.sigmoid( np.add(weightedLayer, bias[layerIndex]) ) # add the biases |
|
|
|
|
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe |
|
|
|
|
maxLayer = len(obj.weights) - 1 |
|
|
|
|
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
|
|
|
|
layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
|
|
|
|
|
|
|
|
|
if( layerIndex < maxLayer ): |
|
|
|
|
return AIlib.think( layer, weights, bias, layerIndex + 1 ) |
|
|
|
|
return AIlib.think( layer, obj, layerIndex + 1 ) |
|
|
|
|
else: |
|
|
|
|
out = np.squeeze(np.asarray(layer)) |
|
|
|
|
return out |
|
|
|
|
|
|
|
|
|
def gradient( prop, gradIndex: int=0 ): |
|
|
|
|
# Calculate the gradient |
|
|
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
|
|
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
|
|
|
|
def propDer( dCost, dProp ): |
|
|
|
|
# Calculate the partial derivative for that prop |
|
|
|
|
return dCost / dProp |
|
|
|
|
|
|
|
|
|
return gradient |
|
|
|
|
def gradient( inp:np.array, obj, prop, theta ): |
|
|
|
|
# Calculate the gradient for that prop |
|
|
|
|
prop2 = prop + theta |
|
|
|
|
# then create another instance of the object and compare |
|
|
|
|
|
|
|
|
|
# calculate the diff between the new prop and old |
|
|
|
|
res = AIlib.think( inp, obj. ) |
|
|
|
|
|
|
|
|
|
def mutateProp( prop:list, lr:float, gradient ): |
|
|
|
|
newProp = [None] * len(prop) |
|
|
|
@ -53,3 +57,6 @@ class AIlib: |
|
|
|
|
# Cost in respect to weights |
|
|
|
|
# Cost in respect to biases |
|
|
|
|
|
|
|
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
|
|
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
|
|
|
|
|
|
|
|
|