|
|
|
@ -41,7 +41,7 @@ class AIlib: |
|
|
|
|
# Calculate the partial derivative for that prop |
|
|
|
|
return dCost / dProp |
|
|
|
|
|
|
|
|
|
def compareAIobjects( obj1, obj2 ): |
|
|
|
|
def compareAIobjects( inp, obj1, obj2 ): |
|
|
|
|
# Compare the two instances |
|
|
|
|
res1 = AIlib.think( inp, obj1 ) |
|
|
|
|
cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost |
|
|
|
@ -51,31 +51,46 @@ class AIlib: |
|
|
|
|
|
|
|
|
|
# Actually calculate stuff |
|
|
|
|
dCost = cost2 - cost1 |
|
|
|
|
return dCost |
|
|
|
|
return dCost, cost1 |
|
|
|
|
|
|
|
|
|
def compareInstanceWeight( obj, theta, layerIndex, neuronIndex_X=0, neuronIndex_Y=0 ): |
|
|
|
|
def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ): |
|
|
|
|
# Create new a instance of the object |
|
|
|
|
obj2 = copy(obj) # annoying way to create a new instance of the object |
|
|
|
|
|
|
|
|
|
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron |
|
|
|
|
dCost = AIlib.compareAIobjects( obj, obj2 ) # compare the two and get the dCost with respect to the weights |
|
|
|
|
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights |
|
|
|
|
|
|
|
|
|
return dCost |
|
|
|
|
return dCost, curCost |
|
|
|
|
|
|
|
|
|
def compareInstanceBias( obj, theta, layerIndex, biasIndex ): |
|
|
|
|
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ): |
|
|
|
|
obj2 = copy(obj) |
|
|
|
|
|
|
|
|
|
obj2.bias[layerIndex][biasIndex] += theta # do the same thing for the bias |
|
|
|
|
dCost = AIlib.compareAIobjects( obj, obj2 ) |
|
|
|
|
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias |
|
|
|
|
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) |
|
|
|
|
|
|
|
|
|
return dCost |
|
|
|
|
return dCost, curCost |
|
|
|
|
|
|
|
|
|
def getChangeInCost( obj, theta, layerIndex ): |
|
|
|
|
def getChangeInCost( obj, inp, theta, layerIndex ): |
|
|
|
|
mirrorObj = copy(obj) |
|
|
|
|
|
|
|
|
|
# Fill the buffer with None so that the dCost can replace it later |
|
|
|
|
mirrorObj.weights[layerIndex].fill(None) |
|
|
|
|
mirrorObj.bias[layerIndex].fill(None) |
|
|
|
|
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder |
|
|
|
|
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape ) |
|
|
|
|
|
|
|
|
|
# Get the cost change for the weights |
|
|
|
|
weightLenX = len(dCost_W) |
|
|
|
|
weightLenY = len(dCost_W[0]) |
|
|
|
|
|
|
|
|
|
for x in range(weightLenX): # get the dCost for each x,y |
|
|
|
|
for y in range(weightLenY): |
|
|
|
|
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) |
|
|
|
|
|
|
|
|
|
# Get the cost change for the biases |
|
|
|
|
biasLenY = len(dCost_B[0]) |
|
|
|
|
for index in range(biasLenY): |
|
|
|
|
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( obj, inp, theta, layerIndex, index ) |
|
|
|
|
|
|
|
|
|
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -83,6 +98,8 @@ class AIlib: |
|
|
|
|
# Check if grads exists, if not create the buffer |
|
|
|
|
if( not grads ): |
|
|
|
|
grads = [None] * (maxLayer+1) |
|
|
|
|
|
|
|
|
|
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( obj, inp, theta, layerIndex ) |
|
|
|
|
|
|
|
|
|
# Calculate the gradient for the layer |
|
|
|
|
weightDer = AIlib.propDer( dCost_W, theta ) |
|
|
|
@ -98,7 +115,7 @@ class AIlib: |
|
|
|
|
if( newLayer <= maxLayer ): |
|
|
|
|
return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
|
|
|
|
else: |
|
|
|
|
return grads, res1, cost1 |
|
|
|
|
return grads, meanCurCost |
|
|
|
|
|
|
|
|
|
def mutateProps( inpObj, maxLen:int, gradient:list ): |
|
|
|
|
obj = copy(inpObj) |
|
|
|
@ -120,10 +137,10 @@ class AIlib: |
|
|
|
|
|
|
|
|
|
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
|
|
|
|
maxLen = len(obj.bias) |
|
|
|
|
grads, res, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
|
|
|
|
grads, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
|
|
|
|
|
|
|
|
|
obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round |
|
|
|
|
print("Cost:", curCost, "|", inp, res) |
|
|
|
|
print("Cost:", curCost) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("DONE\n") |
|
|
|
|