|
|
@ -115,13 +115,31 @@ class AIlib: |
|
|
|
if( newLayer <= maxLayer ): |
|
|
|
if( newLayer <= maxLayer ): |
|
|
|
return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
|
|
|
return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) |
|
|
|
else: |
|
|
|
else: |
|
|
|
return grads, meanCurCost |
|
|
|
return grads, dCost_W, dCost_B, meanCurCost |
|
|
|
|
|
|
|
|
|
|
|
def mutateProps( inpObj, maxLen:int, gradient:list ): |
|
|
|
def calculateSteepness( cost:float, gradient:np.matrix ): |
|
|
|
|
|
|
|
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length) |
|
|
|
|
|
|
|
ddCost = cost / gradLen |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return np.arcsin( ddCost ) / 180 # the gradients "angle" cannot become steeper than 180. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getLearningRate( cost:float, gradient:dict, maxLen:int ): |
|
|
|
|
|
|
|
learningrate = { |
|
|
|
|
|
|
|
"weight": [], |
|
|
|
|
|
|
|
"bias": [] |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(maxLen): |
|
|
|
|
|
|
|
learningrate["weights"][i] = AIlib.calculateSteepness( cost, gradient["weight"][i] ) |
|
|
|
|
|
|
|
learningrate["bias"][i] = AIlib.calculateSteepness( cost, gradient["bias"][i] ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mutateProps( inpObj, curCost:float, maxLen:int, gradient:list ): |
|
|
|
obj = copy(inpObj) |
|
|
|
obj = copy(inpObj) |
|
|
|
|
|
|
|
|
|
|
|
for i in range(maxLen): |
|
|
|
for i in range(maxLen): |
|
|
|
obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights |
|
|
|
obj.weights[i] -= AIlib.getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["weight"] # mutate the weights |
|
|
|
obj.bias[i] -= obj.learningrate * gradient[i]["bias"] |
|
|
|
obj.bias[i] -= AIlib.getLearningRate( curCost, gradient[i]["weight"], maxLen ) * gradient[i]["bias"] |
|
|
|
|
|
|
|
|
|
|
|
return obj |
|
|
|
return obj |
|
|
|
|
|
|
|
|
|
|
@ -137,9 +155,9 @@ class AIlib: |
|
|
|
|
|
|
|
|
|
|
|
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
|
|
|
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
|
|
|
maxLen = len(obj.bias) |
|
|
|
maxLen = len(obj.bias) |
|
|
|
grads, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
|
|
|
grads, costW, costB, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) |
|
|
|
|
|
|
|
|
|
|
|
obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round |
|
|
|
obj = AIlib.mutateProps( obj, curCost, maxLen, grads ) # mutate the props for next round |
|
|
|
print(f"Cost: {curCost}") |
|
|
|
print(f"Cost: {curCost}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|