Tweaked thinking

pull/1/head
E. Almqvist 4 years ago
parent 90071935a7
commit 4905f4210f
  1. 29
      rgbAI/lib/func.py

@ -21,28 +21,23 @@ class AIlib:
mat = np.random.rand(x, y) - 0.25
return mat
def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe
def think( inp:np.array, weights:list, bias:list, layerIndex: int=0, layers: list=[] ): # recursive thinking, hehe
maxLayer = len(weights) - 1
weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights
layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases
weightedLayer = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights
layer = AIlib.sigmoid( np.add(weightedLayer, bias[layerIndex]) ) # add the biases
layers[layerIndex] = layer # save it to the layer buffer
if( layerIndex < maxLayer ):
return AIlib.think( layer, weights, bias, layerIndex + 1 )
return AIlib.think( layer, weights, bias, layerIndex + 1, layers )
else:
out = np.squeeze(np.asarray(layer))
print("-Result-")
print(out)
print("\n")
return out
return out, layers
def gradient( prop, cost:float, inp:np.array, predicted:np.array, correct:np.array ):
# Calculate the gradient
derv1 = AIlib.calcCost_derv( predicted, correct )
derv2 = AIlib.sigmoid_der( predicted )
gradient = np.transpose( np.asmatrix(derv1 * derv2 * inp) )
print("Inp:", inp)
print("Grad:", gradient)
return gradient
@ -63,14 +58,8 @@ class AIlib:
correct = AIlib.correctFunc( inp )
cost = AIlib.calcCost( predicted, correct ) # Calculate the cost of the thought result
#inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff
#res2 = AIlib.think( inp2, obj.weights, obj.bias ) # Think the second result
#cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost
gradientWeight = AIlib.gradient( obj.weights, cost, inp, predicted, correct )
gradientBias = AIlib.gradient( obj.bias, cost, inp, predicted, correct )
obj.weights = AIlib.mutateProp( obj.weights, obj.learningrate, gradientWeight )
obj.bias = AIlib.mutateProp( obj.bias, obj.learningrate, gradientBias )
inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff
res2 = AIlib.think( inp2, obj.weights, obj.bias ) # Think the second result
cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost
print("Cost: ", cost1)

Loading…
Cancel
Save