diff --git a/rgbAI/lib/func.py b/rgbAI/lib/func.py index f59fb3f..56b86d6 100644 --- a/rgbAI/lib/func.py +++ b/rgbAI/lib/func.py @@ -21,28 +21,23 @@ class AIlib: mat = np.random.rand(x, y) - 0.25 return mat - def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe + def think( inp:np.array, weights:list, bias:list, layerIndex: int=0, layers: list=[] ): # recursive thinking, hehe maxLayer = len(weights) - 1 - weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights - layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases + weightedLayer = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights + layer = AIlib.sigmoid( np.add(weightedLayer, bias[layerIndex]) ) # add the biases + layers[layerIndex] = layer # save it to the layer buffer if( layerIndex < maxLayer ): - return AIlib.think( layer, weights, bias, layerIndex + 1 ) + return AIlib.think( layer, weights, bias, layerIndex + 1, layers ) else: out = np.squeeze(np.asarray(layer)) print("-Result-") print(out) print("\n") - return out + return out, layers def gradient( prop, cost:float, inp:np.array, predicted:np.array, correct:np.array ): # Calculate the gradient - derv1 = AIlib.calcCost_derv( predicted, correct ) - derv2 = AIlib.sigmoid_der( predicted ) - - gradient = np.transpose( np.asmatrix(derv1 * derv2 * inp) ) - print("Inp:", inp) - print("Grad:", gradient) return gradient @@ -63,14 +58,8 @@ class AIlib: correct = AIlib.correctFunc( inp ) cost = AIlib.calcCost( predicted, correct ) # Calculate the cost of the thought result - #inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff - #res2 = AIlib.think( inp2, obj.weights, obj.bias ) # Think the second result - #cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost - - gradientWeight = AIlib.gradient( obj.weights, cost, inp, predicted, correct ) - gradientBias = AIlib.gradient( obj.bias, cost, inp, predicted, correct ) - - obj.weights = AIlib.mutateProp( obj.weights, obj.learningrate, gradientWeight ) - obj.bias = AIlib.mutateProp( obj.bias, obj.learningrate, gradientBias ) + inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff + res2 = AIlib.think( inp2, obj.weights, obj.bias ) # Think the second result + cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost print("Cost: ", cost1)