Collection of my machine-learning stuff.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
machinelearning/main.py

35 lines
1.2 KiB

4 years ago
#!/usr/bin/env python
import numpy as np
from lib.func import AIlib as ai
class rgb(object):
def __init__(self, loadedWeights: np.matrix=None, loadedBias: np.matrix=None):
if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones
print("Generating weights and biases...")
self.weights = [ ai.genRandomMatrix(3, 4), ai.genRandomMatrix(4, 4), ai.genRandomMatrix(4, 3) ] # array of matrices of weights
# 3 input neurons -> 4 hidden neurons -> 4 hidden neurons -> 3 output neurons
# Generate the biases
self.bias = [ ai.genRandomMatrix(1, 4), ai.genRandomMatrix(1, 4), ai.genRandomMatrix(1, 3) ]
# This doesn't look very good, but it works so...
else: # if we want to load our progress from before then this would do it
self.weights = loadedWeights
self.bias = loadedBias
def learn():
print("learn")
def think(self, inp:np.array):
res = ai.think( np.asmatrix(inp), self.weights, self.bias )
print(res)
# print(self.weights)
# print(self.bias)
def init(): # init func
bot = rgb()
bot.think( np.array([0.2, 0.4, 0.8]) )
init()