parent
d26c6042a0
commit
ba5662b371
@ -1,29 +1,34 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
import numpy as np |
||||
from lib.func import AIlib as ai |
||||
|
||||
class rgb(object): |
||||
def __init__(self, loadedWeights = None, loadedBias = None): |
||||
def __init__(self, loadedWeights: np.matrix=None, loadedBias: np.matrix=None): |
||||
|
||||
if( not loadedWeights or not loadedBias ): |
||||
if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones |
||||
print("Generating weights and biases...") |
||||
self.weights = [ ai.genRandomMatrix(3, 4), ai.genRandomMatrix(4, 4), ai.genRandomMatrix(4, 3) ] # array of matrices of weights |
||||
# 3 input neurons -> 4 hidden neurons -> 4 hidden neurons -> 3 output neurons |
||||
|
||||
# Will be needing biases too |
||||
# Generate the biases |
||||
self.bias = [ ai.genRandomMatrix(1, 4), ai.genRandomMatrix(1, 4), ai.genRandomMatrix(1, 3) ] |
||||
# This doesn't look very good, but it works so... |
||||
# This is all we need |
||||
|
||||
else: # if we want to load our progress from before then this would do it |
||||
print("Loading neural net...") |
||||
self.weights = loadedWeights |
||||
self.bias = loadedBias |
||||
|
||||
def think(self, inputMatrix): |
||||
print(self.weights) |
||||
print(self.bias) |
||||
def learn(): |
||||
print("learn") |
||||
|
||||
def think(self, inp:np.array): |
||||
res = ai.think( np.asmatrix(inp), self.weights, self.bias ) |
||||
print(res) |
||||
# print(self.weights) |
||||
# print(self.bias) |
||||
|
||||
def init(): # init func |
||||
bot = rgb() |
||||
|
||||
bot.think(1) |
||||
bot.think( np.array([0.2, 0.4, 0.8]) ) |
||||
|
||||
init() |
||||
|
Loading…
Reference in new issue