parent
2e472a6f86
commit
ea46d93d61
@ -0,0 +1,187 @@ |
||||
import numpy as np |
||||
from PIL import Image |
||||
|
||||
|
||||
_errstr = "Mode is unknown or incompatible with input array shape." |
||||
|
||||
|
||||
def bytescale(data, cmin=None, cmax=None, high=255, low=0): |
||||
""" |
||||
Byte scales an array (image). |
||||
Byte scaling means converting the input image to uint8 dtype and scaling |
||||
the range to ``(low, high)`` (default 0-255). |
||||
If the input image already has dtype uint8, no scaling is done. |
||||
This function is only available if Python Imaging Library (PIL) is installed. |
||||
Parameters |
||||
---------- |
||||
data : ndarray |
||||
PIL image data array. |
||||
cmin : scalar, optional |
||||
Bias scaling of small values. Default is ``data.min()``. |
||||
cmax : scalar, optional |
||||
Bias scaling of large values. Default is ``data.max()``. |
||||
high : scalar, optional |
||||
Scale max value to `high`. Default is 255. |
||||
low : scalar, optional |
||||
Scale min value to `low`. Default is 0. |
||||
Returns |
||||
------- |
||||
img_array : uint8 ndarray |
||||
The byte-scaled array. |
||||
Examples |
||||
-------- |
||||
>>> from scipy.misc import bytescale |
||||
>>> img = np.array([[ 91.06794177, 3.39058326, 84.4221549 ], |
||||
... [ 73.88003259, 80.91433048, 4.88878881], |
||||
... [ 51.53875334, 34.45808177, 27.5873488 ]]) |
||||
>>> bytescale(img) |
||||
array([[255, 0, 236], |
||||
[205, 225, 4], |
||||
[140, 90, 70]], dtype=uint8) |
||||
>>> bytescale(img, high=200, low=100) |
||||
array([[200, 100, 192], |
||||
[180, 188, 102], |
||||
[155, 135, 128]], dtype=uint8) |
||||
>>> bytescale(img, cmin=0, cmax=255) |
||||
array([[91, 3, 84], |
||||
[74, 81, 5], |
||||
[52, 34, 28]], dtype=uint8) |
||||
""" |
||||
if data.dtype == np.uint8: |
||||
return data |
||||
|
||||
if high > 255: |
||||
raise ValueError("`high` should be less than or equal to 255.") |
||||
if low < 0: |
||||
raise ValueError("`low` should be greater than or equal to 0.") |
||||
if high < low: |
||||
raise ValueError("`high` should be greater than or equal to `low`.") |
||||
|
||||
if cmin is None: |
||||
cmin = data.min() |
||||
if cmax is None: |
||||
cmax = data.max() |
||||
|
||||
cscale = cmax - cmin |
||||
if cscale < 0: |
||||
raise ValueError("`cmax` should be larger than `cmin`.") |
||||
elif cscale == 0: |
||||
cscale = 1 |
||||
|
||||
scale = float(high - low) / cscale |
||||
bytedata = (data - cmin) * scale + low |
||||
return (bytedata.clip(low, high) + 0.5).astype(np.uint8) |
||||
|
||||
|
||||
def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None, |
||||
mode=None, channel_axis=None): |
||||
"""Takes a numpy array and returns a PIL image. |
||||
This function is only available if Python Imaging Library (PIL) is installed. |
||||
The mode of the PIL image depends on the array shape and the `pal` and |
||||
`mode` keywords. |
||||
For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values |
||||
(from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode |
||||
is given as 'F' or 'I' in which case a float and/or integer array is made. |
||||
.. warning:: |
||||
This function uses `bytescale` under the hood to rescale images to use |
||||
the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. |
||||
It will also cast data for 2-D images to ``uint32`` for ``mode=None`` |
||||
(which is the default). |
||||
Notes |
||||
----- |
||||
For 3-D arrays, the `channel_axis` argument tells which dimension of the |
||||
array holds the channel data. |
||||
For 3-D arrays if one of the dimensions is 3, the mode is 'RGB' |
||||
by default or 'YCbCr' if selected. |
||||
The numpy array must be either 2 dimensional or 3 dimensional. |
||||
""" |
||||
data = np.asarray(arr) |
||||
if np.iscomplexobj(data): |
||||
raise ValueError("Cannot convert a complex-valued array.") |
||||
shape = list(data.shape) |
||||
valid = len(shape) == 2 or ((len(shape) == 3) and |
||||
((3 in shape) or (4 in shape))) |
||||
if not valid: |
||||
raise ValueError("'arr' does not have a suitable array shape for " |
||||
"any mode.") |
||||
if len(shape) == 2: |
||||
shape = (shape[1], shape[0]) # columns show up first |
||||
if mode == 'F': |
||||
data32 = data.astype(np.float32) |
||||
image = Image.frombytes(mode, shape, data32.tostring()) |
||||
return image |
||||
if mode in [None, 'L', 'P']: |
||||
bytedata = bytescale(data, high=high, low=low, |
||||
cmin=cmin, cmax=cmax) |
||||
image = Image.frombytes('L', shape, bytedata.tostring()) |
||||
if pal is not None: |
||||
image.putpalette(np.asarray(pal, dtype=np.uint8).tostring()) |
||||
# Becomes a mode='P' automagically. |
||||
elif mode == 'P': # default gray-scale |
||||
pal = (np.arange(0, 256, 1, dtype=np.uint8)[:, np.newaxis] * |
||||
np.ones((3,), dtype=np.uint8)[np.newaxis, :]) |
||||
image.putpalette(np.asarray(pal, dtype=np.uint8).tostring()) |
||||
return image |
||||
if mode == '1': # high input gives threshold for 1 |
||||
bytedata = (data > high) |
||||
image = Image.frombytes('1', shape, bytedata.tostring()) |
||||
return image |
||||
if cmin is None: |
||||
cmin = np.amin(np.ravel(data)) |
||||
if cmax is None: |
||||
cmax = np.amax(np.ravel(data)) |
||||
data = (data*1.0 - cmin)*(high - low)/(cmax - cmin) + low |
||||
if mode == 'I': |
||||
data32 = data.astype(np.uint32) |
||||
image = Image.frombytes(mode, shape, data32.tostring()) |
||||
else: |
||||
raise ValueError(_errstr) |
||||
return image |
||||
|
||||
# if here then 3-d array with a 3 or a 4 in the shape length. |
||||
# Check for 3 in datacube shape --- 'RGB' or 'YCbCr' |
||||
if channel_axis is None: |
||||
if (3 in shape): |
||||
ca = np.flatnonzero(np.asarray(shape) == 3)[0] |
||||
else: |
||||
ca = np.flatnonzero(np.asarray(shape) == 4) |
||||
if len(ca): |
||||
ca = ca[0] |
||||
else: |
||||
raise ValueError("Could not find channel dimension.") |
||||
else: |
||||
ca = channel_axis |
||||
|
||||
numch = shape[ca] |
||||
if numch not in [3, 4]: |
||||
raise ValueError("Channel axis dimension is not valid.") |
||||
|
||||
bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax) |
||||
if ca == 2: |
||||
strdata = bytedata.tostring() |
||||
shape = (shape[1], shape[0]) |
||||
elif ca == 1: |
||||
strdata = np.transpose(bytedata, (0, 2, 1)).tostring() |
||||
shape = (shape[2], shape[0]) |
||||
elif ca == 0: |
||||
strdata = np.transpose(bytedata, (1, 2, 0)).tostring() |
||||
shape = (shape[2], shape[1]) |
||||
if mode is None: |
||||
if numch == 3: |
||||
mode = 'RGB' |
||||
else: |
||||
mode = 'RGBA' |
||||
|
||||
if mode not in ['RGB', 'RGBA', 'YCbCr', 'CMYK']: |
||||
raise ValueError(_errstr) |
||||
|
||||
if mode in ['RGB', 'YCbCr']: |
||||
if numch != 3: |
||||
raise ValueError("Invalid array shape for mode.") |
||||
if mode in ['RGBA', 'CMYK']: |
||||
if numch != 4: |
||||
raise ValueError("Invalid array shape for mode.") |
||||
|
||||
# Here we know data and mode is correct |
||||
image = Image.frombytes(mode, shape, strdata) |
||||
return image |
Loading…
Reference in new issue