You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
2.0 KiB
55 lines
2.0 KiB
import numpy as np
|
|
|
|
class AIlib:
|
|
def sigmoid(x):
|
|
return 1/(1 + np.exp(-x))
|
|
|
|
def sigmoid_der(x):
|
|
return AIlib.sigmoid(x) * (1 - AIlib.sigmoid(x))
|
|
|
|
def correctFunc(inp:np.array): # generates the correct answer for the AI
|
|
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values
|
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
|
|
return (predicted - correct)**2
|
|
|
|
def calcCost_derv( predicted:np.array, correct:np.array ):
|
|
return (predicted - correct)*2
|
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
|
|
# apply ranger with * and -
|
|
mat = np.random.rand(x, y) - 0.25
|
|
return mat
|
|
|
|
def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe
|
|
maxLayer = len(weights) - 1
|
|
weightedLayer = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights
|
|
layer = AIlib.sigmoid( np.add(weightedLayer, bias[layerIndex]) ) # add the biases
|
|
|
|
if( layerIndex < maxLayer ):
|
|
return AIlib.think( layer, weights, bias, layerIndex + 1 )
|
|
else:
|
|
out = np.squeeze(np.asarray(layer))
|
|
return out
|
|
|
|
def gradient( prop, gradIndex: int=0 ):
|
|
# Calculate the gradient
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ]
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff
|
|
|
|
return gradient
|
|
|
|
|
|
def mutateProp( prop:list, lr:float, gradient ):
|
|
newProp = [None] * len(prop)
|
|
|
|
for i in range(len(prop)):
|
|
newProp[i] = prop[i] - (lr*gradient)
|
|
|
|
return newProp
|
|
|
|
def learn( inp:np.array, obj, theta:float ):
|
|
# Calculate the derivative for:
|
|
# Cost in respect to weights
|
|
# Cost in respect to biases
|
|
|
|
|