Collection of my machine-learning stuff.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
machinelearning/lib/func.py

40 lines
1.6 KiB

import numpy as np
class AIlib:
def sigmoid(x):
return 1/(1 + np.exp(-x))
def correctFunc(inp:np.array): # generates the correct answer for the AI
return np.array( rgb[2], rgb[1], rgb[0] ) # basically invert the rgb values
def calcCost( inp:np.array, out:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
sumC = 0
outLen = len(out)
correctOut = correctFunc(inp) # the "correct" output
for i in range(outLen):
sumC += (out[i] - correctOut[i])**2 # get the difference of every value
return sumC / outLen # return the average cost of all rows
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
return np.random.rand(x, y)
def think( inp:np.matrix, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe
# the length of weights and bias should be the same
# if not then the neural net is flawed/incorrect
maxLayer = len(weights)
biasLen = len(bias)
if( maxLayer != len(bias) ):
print("Neural Network Error: Length of weights and bias are not equal.")
print("Weights: ${maxLayer}, Bias: ${biasLen}")
exit()
weightedInput = np.dot( weights[layerIndex], inp ) # dot multiply the input and the weights
layer = np.add( weightedInput, bias[layerIndex] ) # add the biases
if( layerIndex >= maxLayer ):
return layer
else:
think( layer, weights, bias, layerIndex + 1 )