Collection of my machine-learning stuff.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
machinelearning/rgbAI/main.py

58 lines
1.7 KiB

#!/usr/bin/env python
import numpy as np
from lib.func import AIlib as ai
class rgb(object):
def __init__(self, loadedWeights: np.matrix = None, loadedBias: np.matrix = None):
if(not loadedWeights or not loadedBias): # if one is null (None) then just generate new ones
print("Generating weights and biases...")
self.weights = [ai.genRandomMatrix(3, 8), ai.genRandomMatrix(
8, 8), ai.genRandomMatrix(8, 3)] # array of matrices of weights
# 3 input neurons -> 8 hidden neurons -> 8 hidden neurons -> 3 output neurons
# Generate the biases
self.bias = [ai.genRandomMatrix(1, 8), ai.genRandomMatrix(
1, 8), ai.genRandomMatrix(1, 3)]
# This doesn't look very good, but it works so...
self.learningrate = 0.01 # the learning rate of this ai
print(self.weights)
print(self.bias)
else: # if we want to load our progress from before then this would do it
self.weights = loadedWeights
self.bias = loadedBias
def calcError(self, inp: np.array, out: np.array):
cost = ai.calcCost(inp, out)
# Cost needs to get to 0, we can figure out this with backpropagation
return cost
def learn(self):
ai.learn(3, 0.0001, self, 0.001)
def think(self, inp: np.array):
print("\n-Input-")
print(inp)
res = ai.think(inp, self)
print("\n-Output-")
print(res)
return res
def init():
bot = rgb()
bot.learn()
inpArr = np.asarray([1.0, 1.0, 1.0])
res = bot.think(inpArr)
err = bot.calcError(inpArr, res)
print(err)
init()