Collection of my machine-learning stuff.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

163 lines
5.9 KiB

import numpy as np
from copy import deepcopy as copy
class AIlib:
def sigmoid(x):
return 1/(1 + np.exp(-x))
def correctFunc(inp: np.array): # generates the correct answer for the AI
# basically invert the rgb values
return np.asarray([1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]])
# cost function, lower -> good, higher -> bad, bad bot, bad
def calcCost(predicted: np.array, correct: np.array):
costSum = 0
maxLen = len(correct)
for i in range(maxLen):
costSum += abs((predicted[i] - correct[i]))
return costSum / maxLen
def getThinkCost(inp: np.array, predicted: np.array):
corr = AIlib.correctFunc(inp)
return AIlib.calcCost(predicted, corr)
# generate a matrix with x, y dimensions with random values from min-max in it
def genRandomMatrix(x: int, y: int, min: float = 0.0, max: float = 1.0):
# apply ranger with * and -
mat = np.random.rand(x, y) - 0.25
return mat
def think(inp: np.array, obj, layerIndex: int = 0): # recursive thinking, hehe
maxLayer = len(obj.weights) - 1
# dot multiply the input and the weights
weightedLayer = np.dot(inp, obj.weights[layerIndex])
layer = AIlib.sigmoid(
np.add(weightedLayer, obj.bias[layerIndex])) # add the biases
if(layerIndex < maxLayer):
return AIlib.think(layer, obj, layerIndex + 1)
else:
out = np.squeeze(np.asarray(layer))
return out
def propDer(dCost, dProp):
# Calculate the partial derivative for that prop
return dCost / dProp
def compareAIobjects(inp, obj1, obj2):
# Compare the two instances
res1 = AIlib.think(inp, obj1)
cost1 = AIlib.getThinkCost(inp, res1) # get the cost
res2 = AIlib.think(inp, obj2)
cost2 = AIlib.getThinkCost(inp, res2) # get the second cost
# Actually calculate stuff
dCost = cost2 - cost1
return dCost, cost1
def compareInstanceWeight(obj, inp, theta: float, layerIndex: int, neuronIndex_X: int, neuronIndex_Y: int):
# Create new a instance of the object
obj2 = copy(obj) # annoying way to create a new instance of the object
# mutate the second objects neuron
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta
# compare the two and get the dCost with respect to the weights
dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2)
return dCost, curCost
def compareInstanceBias(obj, inp, theta: float, layerIndex: int, biasIndex: int):
obj2 = copy(obj)
# do the same thing for the bias
obj2.bias[layerIndex][0][biasIndex] += theta
dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2)
return dCost, curCost
def getChangeInCost(obj, inp, theta, layerIndex):
mirrorObj = copy(obj)
# Fill the buffer with None so that the dCost can replace it later
# fill it with a placeholder
dCost_W = np.zeros(shape=mirrorObj.weights[layerIndex].shape)
dCost_B = np.zeros(shape=mirrorObj.bias[layerIndex].shape)
# Get the cost change for the weights
weightLenX = len(dCost_W)
weightLenY = len(dCost_W[0])
for x in range(weightLenX): # get the dCost for each x,y
for y in range(weightLenY):
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight(
obj, inp, theta, layerIndex, x, y)
# Get the cost change for the biases
biasLenY = len(dCost_B[0])
for index in range(biasLenY):
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias(
obj, inp, theta, layerIndex, index)
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2
# Calculate the gradient for that prop
def gradient(inp: np.array, obj, theta: float, maxLayer: int, layerIndex: int = 0, grads=None, obj1=None, obj2=None):
# Check if grads exists, if not create the buffer
if(not grads):
grads = [None] * (maxLayer+1)
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost(
obj, inp, theta, layerIndex)
# Calculate the gradient for the layer
weightDer = AIlib.propDer(dCost_W, theta)
biasDer = AIlib.propDer(dCost_B, theta)
# Append the gradients to the list
grads[layerIndex] = {
"weight": weightDer,
"bias": biasDer
}
newLayer = layerIndex + 1
if(newLayer <= maxLayer):
return AIlib.gradient(inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2)
else:
return grads, meanCurCost
def mutateProps(inpObj, maxLen: int, gradient: list):
obj = copy(inpObj)
for i in range(maxLen):
obj.weights[i] -= obj.learningrate * \
gradient[i]["weight"] # mutate the weights
obj.bias[i] -= obj.learningrate * gradient[i]["bias"]
return obj
def learn(inputNum: int, targetCost: float, obj, theta: float, curCost: float = None):
# Calculate the derivative for:
# Cost in respect to weights
# Cost in respect to biases
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ]
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff
inp = np.asarray(np.random.rand(1, inputNum))[
0] # create a random learning sample
# targetCost is the target for the cost function
while(not curCost or curCost > targetCost):
maxLen = len(obj.bias)
grads, curCost = AIlib.gradient(inp, obj, theta, maxLen - 1)
# mutate the props for next round
obj = AIlib.mutateProps(obj, maxLen, grads)
print(f"Cost: {curCost}")
print("DONE\n")
print(obj.weights)
print(obj.bias)