import numpy as np class AIlib: def sigmoid(x): return 1/(1 + np.exp(-x)) def correctFunc(inp:np.array): # generates the correct answer for the AI return np.array( rgb[2], rgb[1], rgb[0] ) # basically invert the rgb values def calcCost( inp:np.array, out:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad sumC = 0 outLen = len(out) correctOut = correctFunc(inp) # the "correct" output for i in range(outLen): sumC += (out[i] - correctOut[i])**2 # get the difference of every value return sumC / outLen # return the average cost of all rows def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it return np.random.rand(x, y) def think( inp:np.matrix, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe # the length of weights and bias should be the same # if not then the neural net is flawed/incorrect maxLayer = len(weights) biasLen = len(bias) if( maxLayer != len(bias) ): print("Neural Network Error: Length of weights and bias are not equal.") print("Weights: ${maxLayer}, Bias: ${biasLen}") exit() weightedInput = np.dot( weights[layerIndex], inp ) # dot multiply the input and the weights layer = np.add( weightedInput, bias[layerIndex] ) # add the biases if( layerIndex >= maxLayer ): return layer else: think( layer, weights, bias, layerIndex + 1 )