import numpy as np class AIlib: def sigmoid(x): return 1/(1 + np.exp(-x)) def correctFunc(inp:np.array): # generates the correct answer for the AI return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values def calcCost( inp:np.array, out:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad sumC = 0 outLen = len(out) correctOut = AIlib.correctFunc(inp) # the "correct" output for i in range(outLen): sumC += (out[i] - correctOut[i])**2 # get the difference of every value return sumC # return the cost def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it # apply ranger with * and - mat = np.random.rand(x, y) - 0.25 return mat def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe try: maxLayer = len(weights) - 1 weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases if( layerIndex < maxLayer ): print(weights[layerIndex]) print("\n") print("Layer " + str(layerIndex)) print(layer) print("\n") if( layerIndex < maxLayer ): return AIlib.think( layer, weights, bias, layerIndex + 1 ) else: return np.squeeze(np.asarray(layer)) except (ValueError, IndexError) as err: print("\n---------") print( "Error: " + str(err) ) print( "Layer index: " + str(layerIndex) ) print( "Max layer index: " + str(maxLayer) ) def gradient( cost1:float, cost2:float, inp1:np.array, inp2:np.array ): return (cost2 - cost1) / (inp2 - inp1)