import numpy as np class AIlib: def sigmoid(x): return 1/(1 + np.exp(-x)) def sigmoid_der(x): return AIlib.sigmoid(x) * (1 - AIlib.sigmoid(x)) def correctFunc(inp:np.array): # generates the correct answer for the AI return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad return (predicted - correct)**2 def calcCost_derv( predicted:np.array, correct:np.array ): return (predicted - correct)*2 def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it # apply ranger with * and - mat = np.random.rand(x, y) - 0.25 return mat def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe maxLayer = len(weights) - 1 weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases if( layerIndex < maxLayer ): return AIlib.think( layer, weights, bias, layerIndex + 1 ) else: out = np.squeeze(np.asarray(layer)) print("-Result-") print(out) print("\n") return out def gradient( prop, cost:float, inp:np.array, predicted:np.array, correct:np.array ): # Calculate the gradient derv1 = AIlib.calcCost_derv( predicted, correct ) derv2 = AIlib.sigmoid_der( predicted ) gradient = np.transpose( np.asmatrix(derv1 * derv2 * inp) ) print("Inp:", inp) print("Grad:", gradient) return gradient def mutateProp( prop:list, lr:float, gradient ): newProp = [None] * len(prop) for i in range(len(prop)): newProp[i] = prop[i] - (lr*gradient) return newProp def learn( inp:np.array, obj, theta:float ): # Calculate the derivative for: # Cost in respect to weights # Cost in respect to biases predicted = AIlib.think( inp, obj.weights, obj.bias ) # Think the first result correct = AIlib.correctFunc( inp ) cost = AIlib.calcCost( predicted, correct ) # Calculate the cost of the thought result #inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff #res2 = AIlib.think( inp2, obj.weights, obj.bias ) # Think the second result #cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost gradientWeight = AIlib.gradient( obj.weights, cost, inp, predicted, correct ) gradientBias = AIlib.gradient( obj.bias, cost, inp, predicted, correct ) obj.weights = AIlib.mutateProp( obj.weights, obj.learningrate, gradientWeight ) obj.bias = AIlib.mutateProp( obj.bias, obj.learningrate, gradientBias ) print("Cost: ", cost1)