import numpy as np class AIlib: def sigmoid(x): return 1/(1 + np.exp(-x)) def sigmoid_der(x): return AIlib.sigmoid(x) * (1 - AIlib.sigmoid(x)) def correctFunc(inp:np.array): # generates the correct answer for the AI return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad return (predicted - correct)**2 def calcCost_derv( predicted:np.array, correct:np.array ): return (predicted - correct)*2 def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it # apply ranger with * and - mat = np.random.rand(x, y) - 0.25 return mat def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe maxLayer = len(obj.weights) - 1 weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases if( layerIndex < maxLayer ): return AIlib.think( layer, obj, layerIndex + 1 ) else: out = np.squeeze(np.asarray(layer)) return out def propDer( dCost, dProp ): # Calculate the partial derivative for that prop return dCost / dProp def gradient( inp:np.array, obj, prop, theta ): # Calculate the gradient for that prop prop2 = prop + theta # then create another instance of the object and compare # calculate the diff between the new prop and old res = AIlib.think( inp, obj. ) def mutateProp( prop:list, lr:float, gradient ): newProp = [None] * len(prop) for i in range(len(prop)): newProp[i] = prop[i] - (lr*gradient) return newProp def learn( inp:np.array, obj, theta:float ): # Calculate the derivative for: # Cost in respect to weights # Cost in respect to biases # i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] # So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff