#!/usr/bin/env python import numpy as np import lib.ailib as ai class rgb(object): def __init__(self, loadedWeights: np.matrix=None, loadedBias: np.matrix=None): if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones print("Generating weights and biases...") self.weights = [ ai.genRandomMatrix(3, 8), ai.genRandomMatrix(8, 8), ai.genRandomMatrix(8, 3) ] # array of matrices of weights # 3 input neurons -> 8 hidden neurons -> 8 hidden neurons -> 3 output neurons # Generate the biases self.bias = [ ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 3) ] # This doesn't look very good, but it works so... self.learningrate = 0.01 # the learning rate of this ai print( self.weights ) print( self.bias ) else: # if we want to load our progress from before then this would do it self.weights = loadedWeights self.bias = loadedBias def calcError( self, inp:np.array, out:np.array ): cost = ai.calcCost( inp, out ) # Cost needs to get to 0, we can figure out this with backpropagation return cost def learn( self ): ai.learn( 3, 0.0001, self, 0.001 ) def think( self, inp:np.array ): print("\n-Input-") print(inp) res = ai.think( inp, self ) print("\n-Output-") print(res) return res def init(): bot = rgb() bot.learn() inpArr = np.asarray([1.0, 1.0, 1.0]) res = bot.think( inpArr ) err = bot.calcError( inpArr, res ) print(err) init()