import numpy as np from copy import deepcopy as copy class AIlib: def sigmoid(x): return 1/(1 + np.exp(-x)) def correctFunc(inp:np.array): # generates the correct answer for the AI return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad costSum = 0 maxLen = len(correct) for i in range(maxLen): costSum += (predicted[i] - correct[i])**2 return costSum / maxLen def getThinkCost( inp:np.array, predicted:np.array ): corr = AIlib.correctFunc(inp) return AIlib.calcCost( predicted, corr ) def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it # apply ranger with * and - mat = np.random.rand(x, y) - 0.25 return mat def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe maxLayer = len(obj.weights) - 1 weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases if( layerIndex < maxLayer ): return AIlib.think( layer, obj, layerIndex + 1 ) else: out = np.squeeze(np.asarray(layer)) return out def propDer( dCost, dProp ): # Calculate the partial derivative for that prop return dCost / dProp def compareAIobjects( inp, obj1, obj2 ): # Compare the two instances res1 = AIlib.think( inp, obj1 ) cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost res2 = AIlib.think( inp, obj2 ) cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost # Actually calculate stuff dCost = cost2 - cost1 return dCost, cost1 def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ): # Create new a instance of the object obj2 = copy(obj) # annoying way to create a new instance of the object obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights return dCost, curCost def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ): obj2 = copy(obj) obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) return dCost, curCost def getChangeInCost( obj, inp, theta, layerIndex ): mirrorObj = copy(obj) # Fill the buffer with None so that the dCost can replace it later dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape ) # Get the cost change for the weights weightLenX = len(dCost_W) weightLenY = len(dCost_W[0]) for x in range(weightLenX): # get the dCost for each x,y for y in range(weightLenY): dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) # Get the cost change for the biases biasLenY = len(dCost_B[0]) for index in range(biasLenY): dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( obj, inp, theta, layerIndex, index ) return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop # Check if grads exists, if not create the buffer if( not grads ): grads = [None] * (maxLayer+1) dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( obj, inp, theta, layerIndex ) # Calculate the gradient for the layer weightDer = AIlib.propDer( dCost_W, theta ) biasDer = AIlib.propDer( dCost_B, theta ) # Append the gradients to the list grads[layerIndex] = { "weight": weightDer, "bias": biasDer } newLayer = layerIndex + 1 if( newLayer <= maxLayer ): return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) else: return grads, meanCurCost def mutateProps( inpObj, maxLen:int, gradient:list ): obj = copy(inpObj) for i in range(maxLen): obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights obj.bias[i] -= obj.learningrate * gradient[i]["bias"] return obj def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): # Calculate the derivative for: # Cost in respect to weights # Cost in respect to biases # i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] # So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function maxLen = len(obj.bias) grads, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round print("Cost:", curCost) print("DONE\n") print(obj.weights) print(obj.bias)