import numpy as np class AIlib: def sigmoid(x): return 1/(1 + np.exp(-x)) def correctFunc(inp:np.array): # generates the correct answer for the AI return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values def calcCost( inp:np.array, out:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad sumC = 0 outLen = len(out) correctOut = AIlib.correctFunc(inp) # the "correct" output for i in range(outLen): sumC += (out[i] - correctOut[i])**2 # get the difference of every value return sumC # return the cost def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it # apply ranger with * and - mat = np.random.rand(x, y) - 0.25 return mat def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe try: maxLayer = len(weights) - 1 weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases if( layerIndex < maxLayer ): print(weights[layerIndex]) print("\n") print("Layer " + str(layerIndex)) print(layer) print("\n") if( layerIndex < maxLayer ): return AIlib.think( layer, weights, bias, layerIndex + 1 ) else: out = np.squeeze(np.asarray(layer)) print("-Result-") print(out) print("\n") return out except (ValueError, IndexError) as err: print("\n---------") print( "Error: " + str(err) ) print( "Layer index: " + str(layerIndex) ) print( "Max layer index: " + str(maxLayer) ) def gradient( dCost:float, prop:list ): propLen = len(prop) gradient = [None] * propLen for i in range( propLen - 1, -1, -1 ): # if( i == propLen - 1 ): # gradient[i] = dCost / prop[i] # else: # gradient[i] = dCost / (prop[i] + gradient[i+1]) gradient[i] = dCost / prop[i] return gradient def mutateProp( prop:list, gradient:list ): newProp = [None] * len(gradient) for i in range(len(gradient)): newProp[i] = prop[i] - gradient[i] # * theta (relative to slope or something) return newProp def learn( inp:np.array, obj, theta:float ): # Calculate the derivative for: # Cost in respect to weights # Cost in respect to biases res1 = AIlib.think( inp, obj.weights, obj.bias ) # Think the first result cost1 = AIlib.calcCost( inp, res1 ) # Calculate the cost of the thought result inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff res2 = AIlib.think( inp2, obj.weights, obj.bias ) # Think the second result cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost dCost = cost2 - cost1 # get the difference weightDer = AIlib.gradient( dCost, obj.weights ) biasDer = AIlib.gradient( dCost, obj.bias ) obj.weights = AIlib.mutateProp( obj.weights, weightDer ) obj.bias = AIlib.mutateProp( obj.bias, biasDer ) print("Cost: ", cost1)