#!/usr/bin/env python import numpy as np from lib.func import AIlib as ai class rgb(object): def __init__(self, loadedWeights: np.matrix=None, loadedBias: np.matrix=None): if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones print("Generating weights and biases...") self.weights = [ ai.genRandomMatrix(4, 3), ai.genRandomMatrix(4, 4), ai.genRandomMatrix(3, 4) ] # array of matrices of weights # 3 input neurons -> 4 hidden neurons -> 4 hidden neurons -> 3 output neurons # Generate the biases self.bias = [ ai.genRandomMatrix(4, 1), ai.genRandomMatrix(4, 1), ai.genRandomMatrix(3, 1) ] # This doesn't look very good, but it works so... else: # if we want to load our progress from before then this would do it self.weights = loadedWeights self.bias = loadedBias def learn(): print("learn") def think(self, inp:np.array): res = ai.think( inp, self.weights, self.bias ) print( "Result: " + str(res) ) # print(self.weights) # print(self.bias) def init(): # init func bot = rgb() bot.think( np.array([0.2, 0.4, 0.8]) ) init()