diff --git a/rgbAI/lib/func.py b/rgbAI/lib/func.py index 03724f6..0a9ed7d 100644 --- a/rgbAI/lib/func.py +++ b/rgbAI/lib/func.py @@ -30,14 +30,11 @@ class AIlib: return AIlib.think( layer, weights, bias, layerIndex + 1 ) else: out = np.squeeze(np.asarray(layer)) - print("-Result-") - print(out) - print("\n") return out - def gradient( prop, cost:float, inp:np.array, predicted:np.array, correct:np.array ): + def gradient( prop, gradIndex: int=0 ): # Calculate the gradient - # i.e. : W' = W - lr * gradient (respect to W) = W - lr*[ dC / dW[i] ... ] + # i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] # So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff return gradient