Revert "Made code pep8 compliant"

This reverts commit 118b13c971.
pull/2/head
Alve 5 years ago
parent 118b13c971
commit 8568d853b0
  1. 55
      rgbAI/lib/func.py
  2. 9
      rgbAI/main.py

@ -1,17 +1,14 @@
import numpy as np
from copy import deepcopy as copy
class AIlib:
def sigmoid(x):
return 1/(1 + np.exp(-x))
def correctFunc(inp:np.array): # generates the correct answer for the AI
# basically invert the rgb values
return np.asarray([1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]])
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values
# cost function, lower -> good, higher -> bad, bad bot, bad
def calcCost(predicted: np.array, correct: np.array):
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
costSum = 0
maxLen = len(correct)
@ -24,18 +21,15 @@ class AIlib:
corr = AIlib.correctFunc(inp)
return AIlib.calcCost( predicted, corr )
# generate a matrix with x, y dimensions with random values from min-max in it
def genRandomMatrix(x: int, y: int, min: float = 0.0, max: float = 1.0):
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
# apply ranger with * and -
mat = np.random.rand(x, y) - 0.25
return mat
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe
maxLayer = len(obj.weights) - 1
# dot multiply the input and the weights
weightedLayer = np.dot(inp, obj.weights[layerIndex])
layer = AIlib.sigmoid(
np.add(weightedLayer, obj.bias[layerIndex])) # add the biases
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights
layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases
if( layerIndex < maxLayer ):
return AIlib.think( layer, obj, layerIndex + 1 )
@ -63,18 +57,15 @@ class AIlib:
# Create new a instance of the object
obj2 = copy(obj) # annoying way to create a new instance of the object
# mutate the second objects neuron
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta
# compare the two and get the dCost with respect to the weights
dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2)
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights
return dCost, curCost
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ):
obj2 = copy(obj)
# do the same thing for the bias
obj2.bias[layerIndex][0][biasIndex] += theta
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 )
return dCost, curCost
@ -83,8 +74,7 @@ class AIlib:
mirrorObj = copy(obj)
# Fill the buffer with None so that the dCost can replace it later
# fill it with a placeholder
dCost_W = np.zeros(shape=mirrorObj.weights[layerIndex].shape)
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape )
# Get the cost change for the weights
@ -93,25 +83,23 @@ class AIlib:
for x in range(weightLenX): # get the dCost for each x,y
for y in range(weightLenY):
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight(
obj, inp, theta, layerIndex, x, y)
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( obj, inp, theta, layerIndex, x, y )
# Get the cost change for the biases
biasLenY = len(dCost_B[0])
for index in range(biasLenY):
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias(
obj, inp, theta, layerIndex, index)
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( obj, inp, theta, layerIndex, index )
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2
# Calculate the gradient for that prop
def gradient(inp: np.array, obj, theta: float, maxLayer: int, layerIndex: int = 0, grads=None, obj1=None, obj2=None):
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop
# Check if grads exists, if not create the buffer
if( not grads ):
grads = [None] * (maxLayer+1)
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost(
obj, inp, theta, layerIndex)
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( obj, inp, theta, layerIndex )
# Calculate the gradient for the layer
weightDer = AIlib.propDer( dCost_W, theta )
@ -132,8 +120,7 @@ class AIlib:
def mutateProps( inpObj, maxLen:int, gradient:list ):
obj = copy(inpObj)
for i in range(maxLen):
obj.weights[i] -= obj.learningrate * \
gradient[i]["weight"] # mutate the weights
obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights
obj.bias[i] -= obj.learningrate * gradient[i]["bias"]
return obj
@ -146,18 +133,16 @@ class AIlib:
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ]
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff
inp = np.asarray(np.random.rand(1, inputNum))[
0] # create a random learning sample
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample
# targetCost is the target for the cost function
while(not curCost or curCost > targetCost):
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function
maxLen = len(obj.bias)
grads, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 )
# mutate the props for next round
obj = AIlib.mutateProps(obj, maxLen, grads)
obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round
print(f"Cost: {curCost}")
print("DONE\n")
print(obj.weights)
print(obj.bias)

@ -2,19 +2,16 @@
import numpy as np
from lib.func import AIlib as ai
class rgb(object):
def __init__(self, loadedWeights: np.matrix=None, loadedBias: np.matrix=None):
if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones
print("Generating weights and biases...")
self.weights = [ai.genRandomMatrix(3, 8), ai.genRandomMatrix(
8, 8), ai.genRandomMatrix(8, 3)] # array of matrices of weights
self.weights = [ ai.genRandomMatrix(3, 8), ai.genRandomMatrix(8, 8), ai.genRandomMatrix(8, 3) ] # array of matrices of weights
# 3 input neurons -> 8 hidden neurons -> 8 hidden neurons -> 3 output neurons
# Generate the biases
self.bias = [ai.genRandomMatrix(1, 8), ai.genRandomMatrix(
1, 8), ai.genRandomMatrix(1, 3)]
self.bias = [ ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 3) ]
# This doesn't look very good, but it works so...
self.learningrate = 0.01 # the learning rate of this ai
@ -44,7 +41,6 @@ class rgb(object):
print(res)
return res
def init():
bot = rgb()
bot.learn()
@ -54,5 +50,4 @@ def init():
err = bot.calcError( inpArr, res )
print(err)
init()

Loading…
Cancel
Save