From 8568d853b082fe83013ae9b20de671145a212b30 Mon Sep 17 00:00:00 2001 From: Alve Date: Fri, 23 Oct 2020 11:03:21 +0200 Subject: [PATCH] Revert "Made code pep8 compliant" This reverts commit 118b13c97183abe1ee55f63e678618f8a964ccb9. --- rgbAI/lib/func.py | 295 ++++++++++++++++++++++------------------------ rgbAI/main.py | 71 ++++++----- 2 files changed, 173 insertions(+), 193 deletions(-) diff --git a/rgbAI/lib/func.py b/rgbAI/lib/func.py index 8cdab43..b5f240c 100644 --- a/rgbAI/lib/func.py +++ b/rgbAI/lib/func.py @@ -1,163 +1,148 @@ import numpy as np from copy import deepcopy as copy - class AIlib: - def sigmoid(x): - return 1/(1 + np.exp(-x)) + def sigmoid(x): + return 1/(1 + np.exp(-x)) + + def correctFunc(inp:np.array): # generates the correct answer for the AI + return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values + + def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad + costSum = 0 + maxLen = len(correct) + + for i in range(maxLen): + costSum += abs((predicted[i] - correct[i])) + + return costSum / maxLen + + def getThinkCost( inp:np.array, predicted:np.array ): + corr = AIlib.correctFunc(inp) + return AIlib.calcCost( predicted, corr ) + + def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it + # apply ranger with * and - + mat = np.random.rand(x, y) - 0.25 + return mat + + def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe + maxLayer = len(obj.weights) - 1 + weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights + layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases + + if( layerIndex < maxLayer ): + return AIlib.think( layer, obj, layerIndex + 1 ) + else: + out = np.squeeze(np.asarray(layer)) + return out + + def propDer( dCost, dProp ): + # Calculate the partial derivative for that prop + return dCost / dProp + + def compareAIobjects( inp, obj1, obj2 ): + # Compare the two instances + res1 = AIlib.think( inp, obj1 ) + cost1 = AIlib.getThinkCost( inp, res1 ) # get the cost + + res2 = AIlib.think( inp, obj2 ) + cost2 = AIlib.getThinkCost( inp, res2 ) # get the second cost + + # Actually calculate stuff + dCost = cost2 - cost1 + return dCost, cost1 + + def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ): + # Create new a instance of the object + obj2 = copy(obj) # annoying way to create a new instance of the object + + obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron + dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights + + return dCost, curCost + + def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ): + obj2 = copy(obj) + + obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias + dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) + + return dCost, curCost + + def getChangeInCost( obj, inp, theta, layerIndex ): + mirrorObj = copy(obj) + + # Fill the buffer with None so that the dCost can replace it later + dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder + dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape ) + + # Get the cost change for the weights + weightLenX = len(dCost_W) + weightLenY = len(dCost_W[0]) + + for x in range(weightLenX): # get the dCost for each x,y + for y in range(weightLenY): + dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) + + # Get the cost change for the biases + biasLenY = len(dCost_B[0]) + for index in range(biasLenY): + dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( obj, inp, theta, layerIndex, index ) + + return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 + + + + def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop + # Check if grads exists, if not create the buffer + if( not grads ): + grads = [None] * (maxLayer+1) + + dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( obj, inp, theta, layerIndex ) + + # Calculate the gradient for the layer + weightDer = AIlib.propDer( dCost_W, theta ) + biasDer = AIlib.propDer( dCost_B, theta ) + + # Append the gradients to the list + grads[layerIndex] = { + "weight": weightDer, + "bias": biasDer + } + + newLayer = layerIndex + 1 + if( newLayer <= maxLayer ): + return AIlib.gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 ) + else: + return grads, meanCurCost + + def mutateProps( inpObj, maxLen:int, gradient:list ): + obj = copy(inpObj) + for i in range(maxLen): + obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights + obj.bias[i] -= obj.learningrate * gradient[i]["bias"] + + return obj + + def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ): + # Calculate the derivative for: + # Cost in respect to weights + # Cost in respect to biases + + # i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] + # So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff + + inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample - def correctFunc(inp: np.array): # generates the correct answer for the AI - # basically invert the rgb values - return np.asarray([1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]]) + while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function + maxLen = len(obj.bias) + grads, curCost = AIlib.gradient( inp, obj, theta, maxLen - 1 ) - # cost function, lower -> good, higher -> bad, bad bot, bad - def calcCost(predicted: np.array, correct: np.array): - costSum = 0 - maxLen = len(correct) - - for i in range(maxLen): - costSum += abs((predicted[i] - correct[i])) + obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round + print(f"Cost: {curCost}") - return costSum / maxLen - - def getThinkCost(inp: np.array, predicted: np.array): - corr = AIlib.correctFunc(inp) - return AIlib.calcCost(predicted, corr) - - # generate a matrix with x, y dimensions with random values from min-max in it - def genRandomMatrix(x: int, y: int, min: float = 0.0, max: float = 1.0): - # apply ranger with * and - - mat = np.random.rand(x, y) - 0.25 - return mat - - def think(inp: np.array, obj, layerIndex: int = 0): # recursive thinking, hehe - maxLayer = len(obj.weights) - 1 - # dot multiply the input and the weights - weightedLayer = np.dot(inp, obj.weights[layerIndex]) - layer = AIlib.sigmoid( - np.add(weightedLayer, obj.bias[layerIndex])) # add the biases - - if(layerIndex < maxLayer): - return AIlib.think(layer, obj, layerIndex + 1) - else: - out = np.squeeze(np.asarray(layer)) - return out - - def propDer(dCost, dProp): - # Calculate the partial derivative for that prop - return dCost / dProp - - def compareAIobjects(inp, obj1, obj2): - # Compare the two instances - res1 = AIlib.think(inp, obj1) - cost1 = AIlib.getThinkCost(inp, res1) # get the cost - - res2 = AIlib.think(inp, obj2) - cost2 = AIlib.getThinkCost(inp, res2) # get the second cost - - # Actually calculate stuff - dCost = cost2 - cost1 - return dCost, cost1 - - def compareInstanceWeight(obj, inp, theta: float, layerIndex: int, neuronIndex_X: int, neuronIndex_Y: int): - # Create new a instance of the object - obj2 = copy(obj) # annoying way to create a new instance of the object - - # mutate the second objects neuron - obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta - # compare the two and get the dCost with respect to the weights - dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2) - - return dCost, curCost - - def compareInstanceBias(obj, inp, theta: float, layerIndex: int, biasIndex: int): - obj2 = copy(obj) - - # do the same thing for the bias - obj2.bias[layerIndex][0][biasIndex] += theta - dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2) - - return dCost, curCost - - def getChangeInCost(obj, inp, theta, layerIndex): - mirrorObj = copy(obj) - - # Fill the buffer with None so that the dCost can replace it later - # fill it with a placeholder - dCost_W = np.zeros(shape=mirrorObj.weights[layerIndex].shape) - dCost_B = np.zeros(shape=mirrorObj.bias[layerIndex].shape) - - # Get the cost change for the weights - weightLenX = len(dCost_W) - weightLenY = len(dCost_W[0]) - - for x in range(weightLenX): # get the dCost for each x,y - for y in range(weightLenY): - dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( - obj, inp, theta, layerIndex, x, y) - - # Get the cost change for the biases - biasLenY = len(dCost_B[0]) - for index in range(biasLenY): - dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( - obj, inp, theta, layerIndex, index) - - return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 - - # Calculate the gradient for that prop - def gradient(inp: np.array, obj, theta: float, maxLayer: int, layerIndex: int = 0, grads=None, obj1=None, obj2=None): - # Check if grads exists, if not create the buffer - if(not grads): - grads = [None] * (maxLayer+1) - - dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( - obj, inp, theta, layerIndex) - - # Calculate the gradient for the layer - weightDer = AIlib.propDer(dCost_W, theta) - biasDer = AIlib.propDer(dCost_B, theta) - - # Append the gradients to the list - grads[layerIndex] = { - "weight": weightDer, - "bias": biasDer - } - - newLayer = layerIndex + 1 - if(newLayer <= maxLayer): - return AIlib.gradient(inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2) - else: - return grads, meanCurCost - - def mutateProps(inpObj, maxLen: int, gradient: list): - obj = copy(inpObj) - for i in range(maxLen): - obj.weights[i] -= obj.learningrate * \ - gradient[i]["weight"] # mutate the weights - obj.bias[i] -= obj.learningrate * gradient[i]["bias"] - - return obj - - def learn(inputNum: int, targetCost: float, obj, theta: float, curCost: float = None): - # Calculate the derivative for: - # Cost in respect to weights - # Cost in respect to biases - # i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] - # So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff - - inp = np.asarray(np.random.rand(1, inputNum))[ - 0] # create a random learning sample - - # targetCost is the target for the cost function - while(not curCost or curCost > targetCost): - maxLen = len(obj.bias) - grads, curCost = AIlib.gradient(inp, obj, theta, maxLen - 1) - - # mutate the props for next round - obj = AIlib.mutateProps(obj, maxLen, grads) - print(f"Cost: {curCost}") - - print("DONE\n") - print(obj.weights) - print(obj.bias) + print("DONE\n") + print(obj.weights) + print(obj.bias) diff --git a/rgbAI/main.py b/rgbAI/main.py index f188294..3042392 100755 --- a/rgbAI/main.py +++ b/rgbAI/main.py @@ -2,57 +2,52 @@ import numpy as np from lib.func import AIlib as ai - class rgb(object): - def __init__(self, loadedWeights: np.matrix = None, loadedBias: np.matrix = None): - - if(not loadedWeights or not loadedBias): # if one is null (None) then just generate new ones - print("Generating weights and biases...") - self.weights = [ai.genRandomMatrix(3, 8), ai.genRandomMatrix( - 8, 8), ai.genRandomMatrix(8, 3)] # array of matrices of weights - # 3 input neurons -> 8 hidden neurons -> 8 hidden neurons -> 3 output neurons + def __init__(self, loadedWeights: np.matrix=None, loadedBias: np.matrix=None): - # Generate the biases - self.bias = [ai.genRandomMatrix(1, 8), ai.genRandomMatrix( - 1, 8), ai.genRandomMatrix(1, 3)] - # This doesn't look very good, but it works so... + if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones + print("Generating weights and biases...") + self.weights = [ ai.genRandomMatrix(3, 8), ai.genRandomMatrix(8, 8), ai.genRandomMatrix(8, 3) ] # array of matrices of weights + # 3 input neurons -> 8 hidden neurons -> 8 hidden neurons -> 3 output neurons - self.learningrate = 0.01 # the learning rate of this ai + # Generate the biases + self.bias = [ ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 8), ai.genRandomMatrix(1, 3) ] + # This doesn't look very good, but it works so... - print(self.weights) - print(self.bias) + self.learningrate = 0.01 # the learning rate of this ai - else: # if we want to load our progress from before then this would do it - self.weights = loadedWeights - self.bias = loadedBias + print( self.weights ) + print( self.bias ) - def calcError(self, inp: np.array, out: np.array): - cost = ai.calcCost(inp, out) - # Cost needs to get to 0, we can figure out this with backpropagation - return cost + else: # if we want to load our progress from before then this would do it + self.weights = loadedWeights + self.bias = loadedBias - def learn(self): - ai.learn(3, 0.0001, self, 0.001) + def calcError( self, inp:np.array, out:np.array ): + cost = ai.calcCost( inp, out ) + # Cost needs to get to 0, we can figure out this with backpropagation + return cost - def think(self, inp: np.array): - print("\n-Input-") - print(inp) + def learn( self ): + ai.learn( 3, 0.0001, self, 0.001 ) - res = ai.think(inp, self) + def think( self, inp:np.array ): + print("\n-Input-") + print(inp) - print("\n-Output-") - print(res) - return res + res = ai.think( inp, self ) + print("\n-Output-") + print(res) + return res def init(): - bot = rgb() - bot.learn() - - inpArr = np.asarray([1.0, 1.0, 1.0]) - res = bot.think(inpArr) - err = bot.calcError(inpArr, res) - print(err) + bot = rgb() + bot.learn() + inpArr = np.asarray([1.0, 1.0, 1.0]) + res = bot.think( inpArr ) + err = bot.calcError( inpArr, res ) + print(err) init()