|
|
@ -1,14 +1,17 @@ |
|
|
|
import numpy as np |
|
|
|
import numpy as np |
|
|
|
from copy import deepcopy as copy |
|
|
|
from copy import deepcopy as copy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AIlib: |
|
|
|
class AIlib: |
|
|
|
def sigmoid(x): |
|
|
|
def sigmoid(x): |
|
|
|
return 1/(1 + np.exp(-x)) |
|
|
|
return 1/(1 + np.exp(-x)) |
|
|
|
|
|
|
|
|
|
|
|
def correctFunc(inp: np.array): # generates the correct answer for the AI |
|
|
|
def correctFunc(inp: np.array): # generates the correct answer for the AI |
|
|
|
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values |
|
|
|
# basically invert the rgb values |
|
|
|
|
|
|
|
return np.asarray([1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]]) |
|
|
|
|
|
|
|
|
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad |
|
|
|
# cost function, lower -> good, higher -> bad, bad bot, bad |
|
|
|
|
|
|
|
def calcCost(predicted: np.array, correct: np.array): |
|
|
|
costSum = 0 |
|
|
|
costSum = 0 |
|
|
|
maxLen = len(correct) |
|
|
|
maxLen = len(correct) |
|
|
|
|
|
|
|
|
|
|
@ -21,15 +24,18 @@ class AIlib: |
|
|
|
corr = AIlib.correctFunc(inp) |
|
|
|
corr = AIlib.correctFunc(inp) |
|
|
|
return AIlib.calcCost(predicted, corr) |
|
|
|
return AIlib.calcCost(predicted, corr) |
|
|
|
|
|
|
|
|
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it |
|
|
|
# generate a matrix with x, y dimensions with random values from min-max in it |
|
|
|
|
|
|
|
def genRandomMatrix(x: int, y: int, min: float = 0.0, max: float = 1.0): |
|
|
|
# apply ranger with * and - |
|
|
|
# apply ranger with * and - |
|
|
|
mat = np.random.rand(x, y) - 0.25 |
|
|
|
mat = np.random.rand(x, y) - 0.25 |
|
|
|
return mat |
|
|
|
return mat |
|
|
|
|
|
|
|
|
|
|
|
def think(inp: np.array, obj, layerIndex: int = 0): # recursive thinking, hehe |
|
|
|
def think(inp: np.array, obj, layerIndex: int = 0): # recursive thinking, hehe |
|
|
|
maxLayer = len(obj.weights) - 1 |
|
|
|
maxLayer = len(obj.weights) - 1 |
|
|
|
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights |
|
|
|
# dot multiply the input and the weights |
|
|
|
layer = AIlib.sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases |
|
|
|
weightedLayer = np.dot(inp, obj.weights[layerIndex]) |
|
|
|
|
|
|
|
layer = AIlib.sigmoid( |
|
|
|
|
|
|
|
np.add(weightedLayer, obj.bias[layerIndex])) # add the biases |
|
|
|
|
|
|
|
|
|
|
|
if(layerIndex < maxLayer): |
|
|
|
if(layerIndex < maxLayer): |
|
|
|
return AIlib.think(layer, obj, layerIndex + 1) |
|
|
|
return AIlib.think(layer, obj, layerIndex + 1) |
|
|
@ -57,15 +63,18 @@ class AIlib: |
|
|
|
# Create new a instance of the object |
|
|
|
# Create new a instance of the object |
|
|
|
obj2 = copy(obj) # annoying way to create a new instance of the object |
|
|
|
obj2 = copy(obj) # annoying way to create a new instance of the object |
|
|
|
|
|
|
|
|
|
|
|
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron |
|
|
|
# mutate the second objects neuron |
|
|
|
dCost, curCost = AIlib.compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights |
|
|
|
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta |
|
|
|
|
|
|
|
# compare the two and get the dCost with respect to the weights |
|
|
|
|
|
|
|
dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2) |
|
|
|
|
|
|
|
|
|
|
|
return dCost, curCost |
|
|
|
return dCost, curCost |
|
|
|
|
|
|
|
|
|
|
|
def compareInstanceBias(obj, inp, theta: float, layerIndex: int, biasIndex: int): |
|
|
|
def compareInstanceBias(obj, inp, theta: float, layerIndex: int, biasIndex: int): |
|
|
|
obj2 = copy(obj) |
|
|
|
obj2 = copy(obj) |
|
|
|
|
|
|
|
|
|
|
|
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias |
|
|
|
# do the same thing for the bias |
|
|
|
|
|
|
|
obj2.bias[layerIndex][0][biasIndex] += theta |
|
|
|
dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2) |
|
|
|
dCost, curCost = AIlib.compareAIobjects(inp, obj, obj2) |
|
|
|
|
|
|
|
|
|
|
|
return dCost, curCost |
|
|
|
return dCost, curCost |
|
|
@ -74,7 +83,8 @@ class AIlib: |
|
|
|
mirrorObj = copy(obj) |
|
|
|
mirrorObj = copy(obj) |
|
|
|
|
|
|
|
|
|
|
|
# Fill the buffer with None so that the dCost can replace it later |
|
|
|
# Fill the buffer with None so that the dCost can replace it later |
|
|
|
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder |
|
|
|
# fill it with a placeholder |
|
|
|
|
|
|
|
dCost_W = np.zeros(shape=mirrorObj.weights[layerIndex].shape) |
|
|
|
dCost_B = np.zeros(shape=mirrorObj.bias[layerIndex].shape) |
|
|
|
dCost_B = np.zeros(shape=mirrorObj.bias[layerIndex].shape) |
|
|
|
|
|
|
|
|
|
|
|
# Get the cost change for the weights |
|
|
|
# Get the cost change for the weights |
|
|
@ -83,23 +93,25 @@ class AIlib: |
|
|
|
|
|
|
|
|
|
|
|
for x in range(weightLenX): # get the dCost for each x,y |
|
|
|
for x in range(weightLenX): # get the dCost for each x,y |
|
|
|
for y in range(weightLenY): |
|
|
|
for y in range(weightLenY): |
|
|
|
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( obj, inp, theta, layerIndex, x, y ) |
|
|
|
dCost_W[x][y], curCostWeight = AIlib.compareInstanceWeight( |
|
|
|
|
|
|
|
obj, inp, theta, layerIndex, x, y) |
|
|
|
|
|
|
|
|
|
|
|
# Get the cost change for the biases |
|
|
|
# Get the cost change for the biases |
|
|
|
biasLenY = len(dCost_B[0]) |
|
|
|
biasLenY = len(dCost_B[0]) |
|
|
|
for index in range(biasLenY): |
|
|
|
for index in range(biasLenY): |
|
|
|
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( obj, inp, theta, layerIndex, index ) |
|
|
|
dCost_B[0][index], curCostBias = AIlib.compareInstanceBias( |
|
|
|
|
|
|
|
obj, inp, theta, layerIndex, index) |
|
|
|
|
|
|
|
|
|
|
|
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 |
|
|
|
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate the gradient for that prop |
|
|
|
|
|
|
|
def gradient(inp: np.array, obj, theta: float, maxLayer: int, layerIndex: int = 0, grads=None, obj1=None, obj2=None): |
|
|
|
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop |
|
|
|
|
|
|
|
# Check if grads exists, if not create the buffer |
|
|
|
# Check if grads exists, if not create the buffer |
|
|
|
if(not grads): |
|
|
|
if(not grads): |
|
|
|
grads = [None] * (maxLayer+1) |
|
|
|
grads = [None] * (maxLayer+1) |
|
|
|
|
|
|
|
|
|
|
|
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( obj, inp, theta, layerIndex ) |
|
|
|
dCost_W, dCost_B, meanCurCost = AIlib.getChangeInCost( |
|
|
|
|
|
|
|
obj, inp, theta, layerIndex) |
|
|
|
|
|
|
|
|
|
|
|
# Calculate the gradient for the layer |
|
|
|
# Calculate the gradient for the layer |
|
|
|
weightDer = AIlib.propDer(dCost_W, theta) |
|
|
|
weightDer = AIlib.propDer(dCost_W, theta) |
|
|
@ -120,7 +132,8 @@ class AIlib: |
|
|
|
def mutateProps(inpObj, maxLen: int, gradient: list): |
|
|
|
def mutateProps(inpObj, maxLen: int, gradient: list): |
|
|
|
obj = copy(inpObj) |
|
|
|
obj = copy(inpObj) |
|
|
|
for i in range(maxLen): |
|
|
|
for i in range(maxLen): |
|
|
|
obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights |
|
|
|
obj.weights[i] -= obj.learningrate * \ |
|
|
|
|
|
|
|
gradient[i]["weight"] # mutate the weights |
|
|
|
obj.bias[i] -= obj.learningrate * gradient[i]["bias"] |
|
|
|
obj.bias[i] -= obj.learningrate * gradient[i]["bias"] |
|
|
|
|
|
|
|
|
|
|
|
return obj |
|
|
|
return obj |
|
|
@ -133,16 +146,18 @@ class AIlib: |
|
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
|
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ] |
|
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
|
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff |
|
|
|
|
|
|
|
|
|
|
|
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample |
|
|
|
inp = np.asarray(np.random.rand(1, inputNum))[ |
|
|
|
|
|
|
|
0] # create a random learning sample |
|
|
|
|
|
|
|
|
|
|
|
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function |
|
|
|
# targetCost is the target for the cost function |
|
|
|
|
|
|
|
while(not curCost or curCost > targetCost): |
|
|
|
maxLen = len(obj.bias) |
|
|
|
maxLen = len(obj.bias) |
|
|
|
grads, curCost = AIlib.gradient(inp, obj, theta, maxLen - 1) |
|
|
|
grads, curCost = AIlib.gradient(inp, obj, theta, maxLen - 1) |
|
|
|
|
|
|
|
|
|
|
|
obj = AIlib.mutateProps( obj, maxLen, grads ) # mutate the props for next round |
|
|
|
# mutate the props for next round |
|
|
|
|
|
|
|
obj = AIlib.mutateProps(obj, maxLen, grads) |
|
|
|
print(f"Cost: {curCost}") |
|
|
|
print(f"Cost: {curCost}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("DONE\n") |
|
|
|
print("DONE\n") |
|
|
|
print(obj.weights) |
|
|
|
print(obj.weights) |
|
|
|
print(obj.bias) |
|
|
|
print(obj.bias) |
|
|
|