diff --git a/lib/func.py b/lib/func.py index 3f80afa..44a7079 100644 --- a/lib/func.py +++ b/lib/func.py @@ -32,12 +32,13 @@ class AIlib: exit() try: - print("Think " + str(layerIndex)) - weightedInput = np.dot( weights[layerIndex], inp ) # dot multiply the input and the weights + weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases - print(layer) - print("\n") + if( layerIndex < maxLayer ): + print("Layer " + str(layerIndex)) + print(layer) + print("\n") if( layerIndex < maxLayer ): return AIlib.think( layer, weights, bias, layerIndex + 1 ) diff --git a/main.py b/main.py index d8253fa..732575d 100755 --- a/main.py +++ b/main.py @@ -7,11 +7,11 @@ class rgb(object): if( not loadedWeights or not loadedBias ): # if one is null (None) then just generate new ones print("Generating weights and biases...") - self.weights = [ ai.genRandomMatrix(4, 3), ai.genRandomMatrix(4, 4), ai.genRandomMatrix(3, 4) ] # array of matrices of weights + self.weights = [ ai.genRandomMatrix(3, 4), ai.genRandomMatrix(4, 4), ai.genRandomMatrix(4, 3) ] # array of matrices of weights # 3 input neurons -> 4 hidden neurons -> 4 hidden neurons -> 3 output neurons # Generate the biases - self.bias = [ ai.genRandomMatrix(4, 1), ai.genRandomMatrix(4, 1), ai.genRandomMatrix(3, 1) ] + self.bias = [ ai.genRandomMatrix(1, 4), ai.genRandomMatrix(1, 4), ai.genRandomMatrix(1, 3) ] # This doesn't look very good, but it works so... else: # if we want to load our progress from before then this would do it @@ -22,8 +22,13 @@ class rgb(object): print("learn") def think(self, inp:np.array): + print("\n-Input-") + print(inp) + print("\n") + res = ai.think( inp, self.weights, self.bias ) - print("\n-Result-") + + print("\n-Output-") print(res) def init(): # init func