Collection of my machine-learning stuff.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

176 lines
5.8 KiB

import numpy as np
from copy import deepcopy as copy
def sigmoid(x):
return 1/(1 + np.exp(-x))
def correctFunc(inp:np.array): # generates the correct answer for the AI
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
costSum = 0
maxLen = len(correct)
for i in range(maxLen):
costSum += abs((predicted[i] - correct[i]))
return costSum / maxLen
def getThinkCost( inp:np.array, predicted:np.array ):
corr = correctFunc(inp)
return calcCost( predicted, corr )
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
# apply ranger with * and -
mat = np.random.rand(x, y) - 0.25
return mat
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe
maxLayer = len(obj.weights) - 1
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights
layer = sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases
if( layerIndex < maxLayer ):
return think( layer, obj, layerIndex + 1 )
else:
out = np.squeeze(np.asarray(layer))
return out
def propDer( dCost, dProp ):
# Calculate the partial derivative for that prop
return dCost / dProp
def compareAIobjects( inp, obj1, obj2 ):
# Compare the two instances
res1 = think( inp, obj1 )
cost1 = getThinkCost( inp, res1 ) # get the cost
res2 = think( inp, obj2 )
cost2 = getThinkCost( inp, res2 ) # get the second cost
# Actually calculate stuff
dCost = cost2 - cost1
return dCost, cost1
def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ):
# Create new a instance of the object
obj2 = copy(obj) # annoying way to create a new instance of the object
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron
dCost, curCost = compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights
return dCost, curCost
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ):
obj2 = copy(obj)
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias
dCost, curCost = compareAIobjects( inp, obj, obj2 )
return dCost, curCost
def getChangeInCost( obj, inp, theta, layerIndex ):
mirrorObj = copy(obj)
# Fill the buffer with None so that the dCost can replace it later
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape )
# Get the cost change for the weights
weightLenX = len(dCost_W)
weightLenY = len(dCost_W[0])
for x in range(weightLenX): # get the dCost for each x,y
for y in range(weightLenY):
dCost_W[x][y], curCostWeight = compareInstanceWeight( obj, inp, theta, layerIndex, x, y )
# Get the cost change for the biases
biasLenY = len(dCost_B[0])
for index in range(biasLenY):
dCost_B[0][index], curCostBias = compareInstanceBias( obj, inp, theta, layerIndex, index )
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop
# Check if grads exists, if not create the buffer
if( not grads ):
grads = [None] * (maxLayer+1)
dCost_W, dCost_B, meanCurCost = getChangeInCost( obj, inp, theta, layerIndex )
# Calculate the gradient for the layer
weightDer = propDer( dCost_W, theta )
biasDer = propDer( dCost_B, theta )
# Append the gradients to the list
grads[layerIndex] = {
"weight": weightDer,
"bias": biasDer
}
newLayer = layerIndex + 1
if( newLayer <= maxLayer ):
return gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 )
else:
return grads, dCost_W, dCost_B, meanCurCost
def calculateSteepness( cost:float, gradient:np.matrix ):
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length)
ddCost = cost / gradLen
out = np.log10(ddCost)
return out
def getLearningRate( cost:float, gradient:np.matrix, maxLen:int ):
learningrate = {
"weight": [None] * maxLen,
"bias": [None] * maxLen
}
for i in range(maxLen):
learningrate["weight"][i] = calculateSteepness( cost, gradient )
learningrate["bias"][i] = calculateSteepness( cost, gradient )
return learningrate
def mutateProps( inpObj, curCost:float, maxLayer:int, gradient:list ):
obj = copy(inpObj)
for layer in range(maxLayer):
lr = getLearningRate( curCost, gradient[layer]["weight"], maxLayer )
print(lr)
obj.weights[layer] -= lr["weight"] * gradient[layer]["weight"] # mutate the weights
obj.bias[layer] -= lr["bias"] * gradient[layer]["bias"]
# obj.weights[i] -= obj.learningrate * gradient[i]["weight"] # mutate the weights
# obj.bias[i] -= obj.learningrate * gradient[i]["bias"]
return obj
def learn( inputNum:int, targetCost:float, obj, theta:float, curCost: float=None ):
# Calculate the derivative for:
# Cost in respect to weights
# Cost in respect to biases
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ]
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff
while( not curCost or curCost > targetCost ): # targetCost is the target for the cost function
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample
maxLen = len(obj.bias)
grads, costW, costB, curCost = gradient( inp, obj, theta, maxLen - 1 )
obj = mutateProps( obj, curCost, maxLen, grads ) # mutate the props for next round
print(f"Cost: {curCost}")
print("DONE\n")
print(obj.weights)
print(obj.bias)