|
|
|
import numpy as np
|
|
|
|
from copy import deepcopy as copy
|
|
|
|
|
|
|
|
DEBUG_BUFFER = {
|
|
|
|
"cost": None,
|
|
|
|
"lr": {
|
|
|
|
"weight": None,
|
|
|
|
"bias": None
|
|
|
|
},
|
|
|
|
"inp": None,
|
|
|
|
"predicted": None,
|
|
|
|
"correct": None,
|
|
|
|
"gen": None
|
|
|
|
}
|
|
|
|
|
|
|
|
def sigmoid(x):
|
|
|
|
return 1/(1 + np.exp(-x))
|
|
|
|
|
|
|
|
def correctFunc(inp:np.array): # generates the correct answer for the AI
|
|
|
|
return np.asarray( [1.0 - inp[0], 1.0 - inp[1], 1.0 - inp[2]] ) # basically invert the rgb values
|
|
|
|
|
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
|
|
|
|
costSum = 0
|
|
|
|
maxLen = len(correct)
|
|
|
|
|
|
|
|
for i in range(maxLen):
|
|
|
|
costSum += abs((predicted[i] - correct[i]))
|
|
|
|
|
|
|
|
return costSum / maxLen
|
|
|
|
|
|
|
|
def getThinkCost( inp:np.array, predicted:np.array ):
|
|
|
|
corr = correctFunc(inp)
|
|
|
|
|
|
|
|
global DEBUG_BUFFER
|
|
|
|
DEBUG_BUFFER["correct"] = corr
|
|
|
|
|
|
|
|
return calcCost( predicted, corr )
|
|
|
|
|
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
|
|
|
|
# apply ranger with * and -
|
|
|
|
mat = np.random.rand(x, y) - 0.25
|
|
|
|
return mat
|
|
|
|
|
|
|
|
def think( inp:np.array, obj, layerIndex: int=0 ): # recursive thinking, hehe
|
|
|
|
maxLayer = len(obj.weights) - 1
|
|
|
|
weightedLayer = np.dot( inp, obj.weights[layerIndex] ) # dot multiply the input and the weights
|
|
|
|
layer = sigmoid( np.add(weightedLayer, obj.bias[layerIndex]) ) # add the biases
|
|
|
|
|
|
|
|
if( layerIndex < maxLayer ):
|
|
|
|
return think( layer, obj, layerIndex + 1 )
|
|
|
|
else:
|
|
|
|
out = np.squeeze(np.asarray(layer))
|
|
|
|
return out
|
|
|
|
|
|
|
|
def propDer( dCost, dProp ):
|
|
|
|
# Calculate the partial derivative for that prop
|
|
|
|
return dCost / dProp
|
|
|
|
|
|
|
|
def compareAIobjects( inp, obj1, obj2 ):
|
|
|
|
# Compare the two instances
|
|
|
|
res1 = think( inp, obj1 )
|
|
|
|
cost1 = getThinkCost( inp, res1 ) # get the cost
|
|
|
|
|
|
|
|
global DEBUG_BUFFER
|
|
|
|
DEBUG_BUFFER["cost"] = cost1
|
|
|
|
DEBUG_BUFFER["predicted"] = res1
|
|
|
|
|
|
|
|
res2 = think( inp, obj2 )
|
|
|
|
cost2 = getThinkCost( inp, res2 ) # get the second cost
|
|
|
|
|
|
|
|
# Actually calculate stuff
|
|
|
|
dCost = cost2 - cost1
|
|
|
|
return dCost, cost1
|
|
|
|
|
|
|
|
def compareInstanceWeight( obj, inp, theta:float, layerIndex:int, neuronIndex_X:int, neuronIndex_Y:int ):
|
|
|
|
# Create new a instance of the object
|
|
|
|
obj2 = copy(obj) # annoying way to create a new instance of the object
|
|
|
|
|
|
|
|
obj2.weights[layerIndex][neuronIndex_X][neuronIndex_Y] += theta # mutate the second objects neuron
|
|
|
|
dCost, curCost = compareAIobjects( inp, obj, obj2 ) # compare the two and get the dCost with respect to the weights
|
|
|
|
|
|
|
|
return dCost, curCost
|
|
|
|
|
|
|
|
def compareInstanceBias( obj, inp, theta:float, layerIndex:int, biasIndex:int ):
|
|
|
|
obj2 = copy(obj)
|
|
|
|
|
|
|
|
obj2.bias[layerIndex][0][biasIndex] += theta # do the same thing for the bias
|
|
|
|
dCost, curCost = compareAIobjects( inp, obj, obj2 )
|
|
|
|
|
|
|
|
return dCost, curCost
|
|
|
|
|
|
|
|
def getChangeInCost( obj, inp, theta, layerIndex ):
|
|
|
|
mirrorObj = copy(obj)
|
|
|
|
|
|
|
|
# Fill the buffer with None so that the dCost can replace it later
|
|
|
|
dCost_W = np.zeros( shape = mirrorObj.weights[layerIndex].shape ) # fill it with a placeholder
|
|
|
|
dCost_B = np.zeros( shape = mirrorObj.bias[layerIndex].shape )
|
|
|
|
|
|
|
|
# Get the cost change for the weights
|
|
|
|
weightLenX = len(dCost_W)
|
|
|
|
weightLenY = len(dCost_W[0])
|
|
|
|
|
|
|
|
for x in range(weightLenX): # get the dCost for each x,y
|
|
|
|
for y in range(weightLenY):
|
|
|
|
dCost_W[x][y], curCostWeight = compareInstanceWeight( obj, inp, theta, layerIndex, x, y )
|
|
|
|
|
|
|
|
# Get the cost change for the biases
|
|
|
|
biasLenY = len(dCost_B[0])
|
|
|
|
for index in range(biasLenY):
|
|
|
|
dCost_B[0][index], curCostBias = compareInstanceBias( obj, inp, theta, layerIndex, index )
|
|
|
|
|
|
|
|
return dCost_W, dCost_B, (curCostBias + curCostWeight)/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gradient( inp:np.array, obj, theta:float, maxLayer:int, layerIndex: int=0, grads=None, obj1=None, obj2=None ): # Calculate the gradient for that prop
|
|
|
|
# Check if grads exists, if not create the buffer
|
|
|
|
if( not grads ):
|
|
|
|
grads = [None] * (maxLayer+1)
|
|
|
|
|
|
|
|
dCost_W, dCost_B, meanCurCost = getChangeInCost( obj, inp, theta, layerIndex )
|
|
|
|
|
|
|
|
# Calculate the gradient for the layer
|
|
|
|
weightDer = propDer( dCost_W, theta )
|
|
|
|
biasDer = propDer( dCost_B, theta )
|
|
|
|
|
|
|
|
# Append the gradients to the list
|
|
|
|
grads[layerIndex] = {
|
|
|
|
"weight": weightDer,
|
|
|
|
"bias": biasDer
|
|
|
|
}
|
|
|
|
|
|
|
|
newLayer = layerIndex + 1
|
|
|
|
if( newLayer <= maxLayer ):
|
|
|
|
return gradient( inp, obj, theta, maxLayer, newLayer, grads, obj1, obj2 )
|
|
|
|
else:
|
|
|
|
return grads, dCost_W, dCost_B, meanCurCost
|
|
|
|
|
|
|
|
def calculateSteepness( cost:float, gradient:np.matrix ):
|
|
|
|
gradLen = np.linalg.norm( gradient ) # basically calculate the hessian but transform the gradient into a scalar (its length)
|
|
|
|
ddCost = cost / gradLen
|
|
|
|
out = np.absolute( np.arcsin( np.sin(ddCost) ) )
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
def getLearningRate( cost:float, gradient:dict, maxLen:int ):
|
|
|
|
learningrate = {
|
|
|
|
"weight": calculateSteepness( cost, gradient["weight"] ),
|
|
|
|
"bias": calculateSteepness( cost, gradient["bias"] )
|
|
|
|
}
|
|
|
|
|
|
|
|
global DEBUG_BUFFER
|
|
|
|
DEBUG_BUFFER["lr"] = learningrate
|
|
|
|
|
|
|
|
return learningrate
|
|
|
|
|
|
|
|
|
|
|
|
def mutateProps( inpObj, curCost:float, maxLayer:int, gradient:list ):
|
|
|
|
obj = inpObj
|
|
|
|
|
|
|
|
for layer in range(maxLayer):
|
|
|
|
lr = getLearningRate( curCost, gradient[layer], maxLayer )
|
|
|
|
|
|
|
|
obj.weights[layer] -= lr["weight"] * gradient[layer]["weight"] # mutate the weights
|
|
|
|
obj.bias[layer] -= lr["bias"] * gradient[layer]["bias"]
|
|
|
|
|
|
|
|
def printProgress():
|
|
|
|
global DEBUG_BUFFER
|
|
|
|
print(f"[{DEBUG_BUFFER['gen']}] inp: {DEBUG_BUFFER['inp']} | cost: {DEBUG_BUFFER['cost']} pre: {DEBUG_BUFFER['predicted']} cor: {DEBUG_BUFFER['correct']}", end="\r")
|
|
|
|
|
|
|
|
def learn( inputNum:int, obj, theta:float, traintimes:int ):
|
|
|
|
# Calculate the derivative for:
|
|
|
|
# Cost in respect to weights
|
|
|
|
# Cost in respect to biases
|
|
|
|
|
|
|
|
# i.e. : W' = W - lr * gradient (respect to W in layer i) = W - lr*[ dC / dW[i] ... ]
|
|
|
|
# So if we change all the weights with i.e. 0.01 = theta, then we can derive the gradient with math and stuff
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
while( count <= traintimes ): # targetCost is the target for the cost function
|
|
|
|
inp = np.asarray(np.random.rand( 1, inputNum ))[0] # create a random learning sample
|
|
|
|
# inp = np.asarray([1.0, 1.0, 1.0])
|
|
|
|
|
|
|
|
global DEBUG_BUFFER
|
|
|
|
DEBUG_BUFFER["inp"] = inp
|
|
|
|
DEBUG_BUFFER["gen"] = count
|
|
|
|
|
|
|
|
maxLen = len(obj.bias)
|
|
|
|
grads, costW, costB, curCost = gradient( inp, obj, theta, maxLen - 1 )
|
|
|
|
|
|
|
|
mutateProps( obj, curCost, maxLen, grads ) # mutate the props for next round
|
|
|
|
|
|
|
|
printProgress()
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
print("\nDONE\n")
|
|
|
|
print(obj.weights)
|
|
|
|
print(obj.bias)
|
|
|
|
|
|
|
|
test = think( np.asarray([1.0, 1.0, 1.0]), obj )
|
|
|
|
print(f"Test 1: {test}")
|
|
|
|
|
|
|
|
test2 = think( np.asarray([0.0, 0.0, 0.0]), obj )
|
|
|
|
print(f"Test 2: {test2}")
|