Collection of my machine-learning stuff.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

53 lines
2.0 KiB

4 years ago
import numpy as np
class AIlib:
def sigmoid(x):
return 1/(1 + np.exp(-x))
4 years ago
def correctFunc(inp:np.array): # generates the correct answer for the AI
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values
def calcCost( inp:np.array, out:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
sumC = 0
outLen = len(out)
correctOut = AIlib.correctFunc(inp) # the "correct" output
for i in range(outLen):
sumC += (out[i] - correctOut[i])**2 # get the difference of every value
4 years ago
return sumC # return the cost
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
4 years ago
# apply ranger with * and -
mat = np.random.rand(x, y) - 0.25
return mat
def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe
4 years ago
try:
4 years ago
maxLayer = len(weights) - 1
weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights
layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases
4 years ago
if( layerIndex < maxLayer ):
4 years ago
print(weights[layerIndex])
print("\n")
print("Layer " + str(layerIndex))
print(layer)
print("\n")
if( layerIndex < maxLayer ):
return AIlib.think( layer, weights, bias, layerIndex + 1 )
4 years ago
else:
return np.squeeze(np.asarray(layer))
except (ValueError, IndexError) as err:
4 years ago
print("\n---------")
print( "Error: " + str(err) )
print( "Layer index: " + str(layerIndex) )
print( "Max layer index: " + str(maxLayer) )
4 years ago
def gradient( cost1:float, cost2:float, inp1:np.array, inp2:np.array ):
return (cost2 - cost1) / (inp2 - inp1)