Collection of my machine-learning stuff.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

83 lines
3.0 KiB

4 years ago
import numpy as np
class AIlib:
def sigmoid(x):
return 1/(1 + np.exp(-x))
4 years ago
def correctFunc(inp:np.array): # generates the correct answer for the AI
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values
def calcCost( inp:np.array, out:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
sumC = 0
outLen = len(out)
correctOut = AIlib.correctFunc(inp) # the "correct" output
for i in range(outLen):
sumC += (out[i] - correctOut[i])**2 # get the difference of every value
4 years ago
return sumC # return the cost
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
4 years ago
# apply ranger with * and -
mat = np.random.rand(x, y) - 0.25
return mat
def think( inp:np.array, weights:list, bias:list, layerIndex: int=0 ): # recursive thinking, hehe
4 years ago
try:
4 years ago
maxLayer = len(weights) - 1
weightedInput = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights
layer = AIlib.sigmoid( np.add(weightedInput, bias[layerIndex]) ) # add the biases
4 years ago
if( layerIndex < maxLayer ):
4 years ago
print(weights[layerIndex])
print("\n")
print("Layer " + str(layerIndex))
print(layer)
print("\n")
if( layerIndex < maxLayer ):
return AIlib.think( layer, weights, bias, layerIndex + 1 )
4 years ago
else:
4 years ago
out = np.squeeze(np.asarray(layer))
print("-Result-")
print(out)
print("\n")
return out
except (ValueError, IndexError) as err:
4 years ago
print("\n---------")
print( "Error: " + str(err) )
print( "Layer index: " + str(layerIndex) )
print( "Max layer index: " + str(maxLayer) )
4 years ago
4 years ago
def gradient( dCost:float, prop:list ):
propLen = len(prop)
gradient = [None] * propLen
for i in range( propLen, 0, -1 ):
if( i == propLen ):
gradient[i] = dCost / prop[i]
else:
gradient[i] = dCost / (prop[i] + gradient[i+1])
4 years ago
return gradient
def learn( inp:np.array, weights:list, bias:list, theta:float ):
# Calculate the derivative for:
# Cost in respect to weights
# Cost in respect to biases
res1 = AIlib.think( inp, weights, bias ) # Think the first result
cost1 = AIlib.calcCost( inp, res1 ) # Calculate the cost of the thought result
inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff
res2 = AIlib.think( inp2, weights, bias ) # Think the second result
cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost
dCost = cost2 - cost1 # get the difference
weightDer = AIlib.gradient( dCost, weights )
biasDer = AIlib.gradient( dCost, bias )
4 years ago
print(weights, len(weights))