|
|
|
import numpy as np
|
|
|
|
|
|
|
|
class AIlib:
|
|
|
|
def sigmoid(x):
|
|
|
|
return 1/(1 + np.exp(-x))
|
|
|
|
|
|
|
|
def sigmoid_der(x):
|
|
|
|
return AIlib.sigmoid(x) * (1 - AIlib.sigmoid(x))
|
|
|
|
|
|
|
|
def correctFunc(inp:np.array): # generates the correct answer for the AI
|
|
|
|
return np.array( [inp[2], inp[1], inp[0]] ) # basically invert the rgb values
|
|
|
|
|
|
|
|
def calcCost( predicted:np.array, correct:np.array ): # cost function, lower -> good, higher -> bad, bad bot, bad
|
|
|
|
return (predicted - correct)**2
|
|
|
|
|
|
|
|
def calcCost_derv( predicted:np.array, correct:np.array ):
|
|
|
|
return (predicted - correct)*2
|
|
|
|
|
|
|
|
def genRandomMatrix( x:int, y:int, min: float=0.0, max: float=1.0 ): # generate a matrix with x, y dimensions with random values from min-max in it
|
|
|
|
# apply ranger with * and -
|
|
|
|
mat = np.random.rand(x, y) - 0.25
|
|
|
|
return mat
|
|
|
|
|
|
|
|
def think( inp:np.array, weights:list, bias:list, layerIndex: int=0, layers: list=[] ): # recursive thinking, hehe
|
|
|
|
maxLayer = len(weights) - 1
|
|
|
|
weightedLayer = np.dot( inp, weights[layerIndex] ) # dot multiply the input and the weights
|
|
|
|
layer = AIlib.sigmoid( np.add(weightedLayer, bias[layerIndex]) ) # add the biases
|
|
|
|
layers[layerIndex] = layer # save it to the layer buffer
|
|
|
|
|
|
|
|
if( layerIndex < maxLayer ):
|
|
|
|
return AIlib.think( layer, weights, bias, layerIndex + 1, layers )
|
|
|
|
else:
|
|
|
|
out = np.squeeze(np.asarray(layer))
|
|
|
|
print("-Result-")
|
|
|
|
print(out)
|
|
|
|
print("\n")
|
|
|
|
return out, layers
|
|
|
|
|
|
|
|
def gradient( prop, cost:float, inp:np.array, predicted:np.array, correct:np.array ):
|
|
|
|
# Calculate the gradient
|
|
|
|
return gradient
|
|
|
|
|
|
|
|
|
|
|
|
def mutateProp( prop:list, lr:float, gradient ):
|
|
|
|
newProp = [None] * len(prop)
|
|
|
|
|
|
|
|
for i in range(len(prop)):
|
|
|
|
newProp[i] = prop[i] - (lr*gradient)
|
|
|
|
|
|
|
|
return newProp
|
|
|
|
|
|
|
|
def learn( inp:np.array, obj, theta:float ):
|
|
|
|
# Calculate the derivative for:
|
|
|
|
# Cost in respect to weights
|
|
|
|
# Cost in respect to biases
|
|
|
|
|
|
|
|
predicted = AIlib.think( inp, obj.weights, obj.bias ) # Think the first result
|
|
|
|
correct = AIlib.correctFunc( inp )
|
|
|
|
cost = AIlib.calcCost( predicted, correct ) # Calculate the cost of the thought result
|
|
|
|
|
|
|
|
inp2 = np.asarray( inp + theta ) # make the new input with `theta` as diff
|
|
|
|
res2 = AIlib.think( inp2, obj.weights, obj.bias ) # Think the second result
|
|
|
|
cost2 = AIlib.calcCost( inp2, res2 ) # Calculate the cost
|
|
|
|
|
|
|
|
print("Cost: ", cost1)
|