Minor stuff

master
E. Almqvist 3 years ago
parent bf4cbe706e
commit a48ee8751f
  1. 8
      ma5/uppg/main.fdb_latexmk
  2. 4
      ma5/uppg/main.log
  3. BIN
      ma5/uppg/main.pdf
  4. BIN
      ma5/uppg/main.synctex.gz
  5. 32
      ma5/uppg/main.tex

@ -1,5 +1,5 @@
# Fdb version 3
["pdflatex"] 1648345203 "main.tex" "main.pdf" "main" 1648345203
["pdflatex"] 1648410637 "main.tex" "main.pdf" "main" 1648410638
"/usr/share/texmf-dist/fonts/map/fontname/texfonts.map" 1647844622 3524 cb3e574dea2d1052e39280babc910dc8 ""
"/usr/share/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm" 1647844622 1004 54797486969f23fa377b128694d548df ""
"/usr/share/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm" 1647844622 916 f87d7c45f9c908e672703b83b72241a3 ""
@ -86,9 +86,9 @@
"/usr/share/texmf-dist/web2c/texmf.cnf" 1647844622 39911 2da6c67557ec033436fe5418a70a8a61 ""
"/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1648036410 4278762 af3ac1370db81a450c1118eabf1fe718 ""
"/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1648036393 2924504 371aaf66e6dc336df8f5856c9444aca8 ""
"main.aux" 1648345203 2317 eb7ea0ad69ba39707b99e3ab67505cde "pdflatex"
"main.out" 1648345203 1159 2635baec54a16692a01d1db6cb342d5e "pdflatex"
"main.tex" 1648345194 12682 eee475df4c55e8b4eade04905b343359 ""
"main.aux" 1648410638 2317 eb7ea0ad69ba39707b99e3ab67505cde "pdflatex"
"main.out" 1648410638 1159 2635baec54a16692a01d1db6cb342d5e "pdflatex"
"main.tex" 1648410636 13932 ba98d7bd049011d605ce0643529cdf46 ""
(generated)
"main.aux"
"main.log"

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2021/Arch Linux) (preloaded format=pdflatex 2022.3.23) 27 MAR 2022 03:40
This is pdfTeX, Version 3.141592653-2.6-1.40.23 (TeX Live 2021/Arch Linux) (preloaded format=pdflatex 2022.3.23) 27 MAR 2022 21:50
entering extended mode
restricted \write18 enabled.
file:line:error style messages enabled.
@ -391,7 +391,7 @@ Here is how much of TeX's memory you used:
1141 hyphenation exceptions out of 8191
60i,7n,63p,809b,330s stack positions out of 5000i,500n,10000p,200000b,80000s
</usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmbxti10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi5.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr12.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr5.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmtt10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm5.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/symbols/msbm7.pfb>
Output written on main.pdf (7 pages, 206528 bytes).
Output written on main.pdf (7 pages, 209097 bytes).
PDF statistics:
192 PDF objects out of 1000 (max. 8388607)
145 compressed objects within 2 object streams

Binary file not shown.

Binary file not shown.

@ -348,8 +348,40 @@ Se relevanta grafbilder i \emph{imgs/}.
\subsection{3}
Vi vet sedan tidigare $\psi_n(x)$:
$$
\psi_n(x) = \sqrt{ \frac{2}{L} } \sin \left( \sqrt{\frac{8 \pi^2 m E_n}{h^2}} x \right)
$$
och i uppgiften får vi att:
$$
\Psi_n(x, t) = \psi_n(x) \cdot e^{-i \frac{E_n}{\hbar}t }
$$
$$
\implies \Psi_n(x, t) = \sqrt{ \frac{2}{L} } \sin \left( \sqrt{\frac{8 \pi^2 m E_n}{h^2}} x \right) \cdot e^{-i \frac{E_n}{\hbar}t } =
$$
$$
= \sqrt{ \frac{2}{L} } \sin \left( \sqrt{\frac{8 \pi^2 m E_n}{h^2}} x \right) \cdot e^{-i \frac{E_n}{ \frac{h}{2\pi} }t }
= \sqrt{ \frac{2}{L} } \sin \left( \sqrt{\frac{8 \pi^2 m E_n}{h^2}} x \right) \cdot e^{-i \frac{2 E_n \pi}{h}t }
$$
$$
\therefore \Psi_n(x,t) = \sqrt{ \frac{2}{L} } \left(e^{-i \frac{2 E_n \pi}{h}t }\right) \sin \left( \sqrt{\frac{8 \pi^2 m E_n}{h^2}} x \right)
$$
Vi behöver nu bara normalisera integralen sådan att den alltid blir $1$ för följande:
$$
\Psi_{1,2}(x, t) = A \left( \psi_1(x)e^{-i \frac{2\pi E_1}{h}t } + \psi_2(x)e^{-i \frac{2\pi E_2}{h}t } \right)
$$
$$
\int_0^L |\Psi_{1,2}(x, t)|^2 dx\ = 1
$$
Eftersom vi integrerar med respekt till $x$ tyder det på att $t$ är en konstant och vi kan därmed skriva om tidsfaktorn som $z_i$:
$$
\int_0^L |\Psi_{1,2}(x, t)|^2 dx\ = \int_0^L \left(A |\psi_1(x)z_1 + \psi_2(x)z_2| \right)^2 dx\
$$
$$
= A^2 \int_0^L |\psi_1(x)z_1 + \psi_2(x)z_2|^2 dx\ = 1.0 \quad | \quad z_i \in \mathbb{C}
$$
\end{document}

Loading…
Cancel
Save