\section{Uppgiftbeskrivning (taget från dokumentet)}
En partikel i en låda är en utav de första tillämpningarna man stöter på när man lär sig om kvantfysik. Man betraktar då en partikel (t.ex. en elektron) som befinner sig i en låda med oändligt höga väggar.
För detta undersöker man partikelns vågfunktion $\wavefun$. Vågfunktionen är i allmänhet en komplex funktion,
dvs den har både en realdel och en imaginärdel. Vågfunktionens absolutbelopp i kvadrat, $\shrodprob$, represen-
terar täthetsfunktionen för att partikeln skall befinna sig vid läge $x$ i lådan. Om partikeln befinner sig i ett så
dvs den har både en realdel och en imaginärdel. Vågfunktionens absolutbelopp i kvadrat, $\shrodprob$, representerar täthetsfunktionen för att partikeln skall befinna sig vid läge $x$ i lådan. Om partikeln befinner sig i ett så
kallat energiegentillstånd så uppfyller den den tidsoberoende Schrödinger ekvationen:
\begin{equation}
\begin{equation}\label{shrodequ}
\shrodequ
\end{equation}
där $E_n$ är partikelns energi, $\hbar=\frac{h}{2\pi}$ och $m$ är partikelns massa.
Att lådans väggar är oändligt höga innebär att vågfunktionen också behöver uppfylla randvillkoren:
där $h$ är Plancks konstant och $m$ är partikelns massa. Väljer därmed att förenkla uttrycket genom att byta ut konstanterna till en variabel (givet att $k =\frac{h}{4\pi m}$):
där $h$ är Plancks konstant och $m$ är partikelns massa. Väljer därmed att förenkla uttrycket genom att byta ut konstanterna till en variabel (givet att $k =\frac{h^2}{8\pi^2 m}$):
Schrödinger ekvationen lyder också att vågfunktionen skall följa både ekvation \ref{shrodequ_con1} och \ref{shrodequ_con2} vilket ger
$$
\psi_n(x) = \sin(x) + ?
\begin{cases}
\int_0^L \shrodprob dx\ = 1.0 & | P(1) \\
\psi_n(0) = \psi_n(L) = 0 & | P(2) \\
\psi_n'(0) = \psi_n'(L) = 0 & | P(3)
\end{cases}
$$
Givet att $P(1)$ implicerar det att vågfunktion $\psi_n(x)$ area mellan $0$ och $L$ är $1$ och $P(2)$ samt $P(3)$ gäller vilket ger att det är en stående våg och den har därmed ett visst antal våglängder ($\lambda$) i relation till antal noder ($n$).