mirror of https://github.com/E-Almqvist/hsf
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
1.7 KiB
88 lines
1.7 KiB
3 years ago
|
\documentclass{article}
|
||
|
|
||
|
\usepackage[margin=2cm]{geometry}
|
||
|
\usepackage{titlesec}
|
||
|
\usepackage{titling}
|
||
|
\usepackage[hidelinks]{hyperref}
|
||
|
\usepackage{multicol}
|
||
|
\usepackage{amsmath}
|
||
|
\usepackage{amsfonts}
|
||
|
\usepackage{amssymb}
|
||
|
\usepackage{braket}
|
||
|
|
||
|
\titleformat{\section}
|
||
|
{\Large\bfseries}
|
||
|
{}
|
||
|
{0em}
|
||
|
{}[\titlerule]
|
||
|
|
||
|
\titleformat{\subsection}
|
||
|
{\large\bfseries}
|
||
|
{}
|
||
|
{0em}
|
||
|
{}
|
||
|
\titlespacing{\subsection}
|
||
|
{0em}{2em}{.4em}
|
||
|
|
||
|
\titleformat{\subsubsection}[runin]
|
||
|
{\bfseries}
|
||
|
{}
|
||
|
{0em}
|
||
|
{}
|
||
|
\titlespacing{\subsubsection}
|
||
|
{0em}{2em}{1em}
|
||
|
|
||
|
\renewcommand{\maketitle}{
|
||
|
\begin{center}
|
||
|
{\huge\bfseries\thetitle}\\
|
||
|
\vspace{1em}
|
||
|
{\Large\theauthor} \\
|
||
|
\vspace{1em}
|
||
|
elalmqvist@gmail.com --- \url{https://wych.dev}
|
||
|
\end{center}
|
||
|
}
|
||
|
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\title{Anteckningar 2022-04-05}
|
||
|
\author{Elias Almqvist}
|
||
|
|
||
|
\maketitle
|
||
|
\newpage
|
||
|
|
||
|
\section{Inhomogena diff-ekvationer av första-ordningen bevis}
|
||
|
|
||
|
$$
|
||
|
y' + ay = f(x)
|
||
|
$$
|
||
|
$$
|
||
|
\text{Låt } g = y_{p1} - y_{p2}
|
||
|
$$
|
||
|
|
||
|
Där $y_{p1}$ och $y_{p2}$ (antagande) är partikulärlösningar till ekvationen $y' + ay = f(x)$. Alltså är $y_{pn}' + ay_{pn} = f(x)$ Detta ger den homogena ekvationen för $g$:
|
||
|
$$
|
||
|
g' + ag = y_{p1}' - y_{p2}' + a\left(y_{p1} - y_{p2}\right) = \left( y_{p1}' + ay_{p1} \right) - \left( y_{p2}' + ay_{p2} \right)
|
||
|
$$
|
||
|
|
||
|
Eftersom $\left( y_{p1}' + ay_{p1} \right) - \left( y_{p2}' + ay_{p2} \right) = f(x) - f(x)$ får vi att:
|
||
|
$$
|
||
|
g' + ag = \left( y_{p1}' + ay_{p1} \right) - \left( y_{p2}' + ay_{p2} \right) = f(x) - f(x) = 0
|
||
|
$$
|
||
|
|
||
|
Dvs $g = y_{p1} - y_{p2}$ är en lösning till $y' + ay = 0$
|
||
|
|
||
|
$$
|
||
|
\implies g + y_{p2} = y_{p1}
|
||
|
$$
|
||
|
$$
|
||
|
\therefore y = g + y_{p2} \because g = y_{p1} - y_{p2}
|
||
|
$$
|
||
|
|
||
|
Då $g = y_h$ och $y_{p2} = y_{p}$
|
||
|
$$
|
||
|
y = y_h + y_p \quad \text{V.S.V}
|
||
|
$$
|
||
|
|
||
|
\end{document}
|