mirror of https://github.com/E-Almqvist/hsf
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
2.4 KiB
137 lines
2.4 KiB
3 years ago
|
\documentclass{article}
|
||
|
|
||
|
\usepackage[margin=2cm]{geometry}
|
||
|
\usepackage{titlesec}
|
||
|
\usepackage{titling}
|
||
|
\usepackage[hidelinks]{hyperref}
|
||
|
\usepackage{multicol}
|
||
|
\usepackage{amsmath}
|
||
|
\usepackage{amsfonts}
|
||
|
\usepackage{amssymb}
|
||
|
\usepackage{braket}
|
||
|
|
||
|
\titleformat{\section}
|
||
|
{\Large\bfseries}
|
||
|
{}
|
||
|
{0em}
|
||
|
{}[\titlerule]
|
||
|
|
||
|
\titleformat{\subsection}
|
||
|
{\large\bfseries}
|
||
|
{}
|
||
|
{0em}
|
||
|
{}
|
||
|
\titlespacing{\subsection}
|
||
|
{0em}{2em}{.4em}
|
||
|
|
||
|
\titleformat{\subsubsection}[runin]
|
||
|
{\bfseries}
|
||
|
{}
|
||
|
{0em}
|
||
|
{}
|
||
|
\titlespacing{\subsubsection}
|
||
|
{0em}{2em}{1em}
|
||
|
|
||
|
\renewcommand{\maketitle}{
|
||
|
\begin{center}
|
||
|
{\huge\bfseries\thetitle}\\
|
||
|
\vspace{1em}
|
||
|
{\Large\theauthor} \\
|
||
|
\vspace{1em}
|
||
|
elalmqvist@gmail.com --- \url{https://wych.dev}
|
||
|
\end{center}
|
||
|
}
|
||
|
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\title{Anteckningar 2022-04-28}
|
||
|
\author{Elias Almqvist}
|
||
|
|
||
|
\maketitle
|
||
|
\newpage
|
||
|
|
||
|
Lös ekvationen:
|
||
|
$$
|
||
|
y'' = -2y' - 8y + \sin x
|
||
|
$$
|
||
|
|
||
|
Lösning:
|
||
|
$$
|
||
|
y'' = -2y' - 8y + \sin x, \quad + 2y' + 8y
|
||
|
$$
|
||
|
$$
|
||
|
y'' + 2y' + 8y = \sin x
|
||
|
$$
|
||
|
|
||
|
Vi får därmed att $y = y_p + y_h$, \\
|
||
|
Börjar med den homogena:
|
||
|
$$
|
||
|
y'' + 2y' + 8y = 0
|
||
|
$$
|
||
|
$$
|
||
|
\implies r^2 + 2r + 8 = 0 \quad \text{antag att y är } e^{rx}
|
||
|
$$
|
||
|
$$
|
||
|
\implies r = -1 \pm \sqrt{-7} = -1 \pm 7i
|
||
|
$$
|
||
|
$$
|
||
|
\therefore y_h = e^{-x} \left( A\cos(\sqrt{7}x) + B\sin{\sqrt{7}x} \right) \quad | \quad A,B \in \mathbb{R}
|
||
|
$$
|
||
|
|
||
|
Part lösn: antar att $y_p$ är av formen: $y_p = D\sin x + E\cos x + F \quad | \quad D,E,F \in \mathbb{R}$ \\
|
||
|
Stoppar in den i ekvationen:
|
||
|
$$
|
||
|
y_p' = D\cos x - E\sin x
|
||
|
$$
|
||
|
$$
|
||
|
y_p'' = -\left( D\sin x + E\cos x \right)
|
||
|
$$
|
||
|
Vi får därmed:
|
||
|
$$
|
||
|
-\left( D\sin x + E\cos x \right) + 2\left(D\cos x - E\sin x\right) + 8\left(D\sin x + E\cos x + F\right) = \sin x
|
||
|
$$
|
||
|
$$
|
||
|
-D\sin x - E\cos x + 2D\cos x - 2E\sin x + 8D\sin x + 8E\cos x + 8F = \sin x
|
||
|
$$
|
||
|
$$
|
||
|
2D\cos x - 2E\sin x + 7D\sin x + 7E\cos x + 8F = \sin x
|
||
|
$$
|
||
|
$$
|
||
|
\implies
|
||
|
\begin{cases}
|
||
|
8F = 0 \implies F = 0 \\
|
||
|
7E + 2D = 0 \\
|
||
|
7D - 2E = 1
|
||
|
\end{cases}
|
||
|
$$
|
||
|
|
||
|
Stoppar in i en matris och får:
|
||
|
$$
|
||
|
\begin{bmatrix}
|
||
|
7 & 2 & 0 \\
|
||
|
-2 & 7 & 1
|
||
|
\end{bmatrix}
|
||
|
\rightarrow
|
||
|
\begin{bmatrix}
|
||
|
1 & 0 & -\frac{2}{53} \\
|
||
|
0 & 1 & \frac{7}{53}
|
||
|
\end{bmatrix}
|
||
|
$$
|
||
|
$$
|
||
|
\therefore y_p = \frac{7}{53} \sin x - \frac{2}{53} \cos x
|
||
|
\quad \because E = -\frac{2}{53}, \quad D = \frac{7}{53}
|
||
|
$$
|
||
|
|
||
|
Slutligen får vi därmed hela allmäna lösningen:
|
||
|
$$
|
||
|
\therefore y = y_p + y_h
|
||
|
$$
|
||
|
$$
|
||
|
= \frac{7}{53} \sin x - \frac{2}{53} \cos x + e^{-x} \left( A\cos(\sqrt{7}x) + B\sin{\sqrt{7}x} \right)
|
||
|
$$
|
||
|
|
||
|
Givet att $A,B \in \mathbb{R}$
|
||
|
|
||
|
\end{document}
|